TY - GEN
T1 - Empirical Bayes approach to Truth Discovery problems
AU - Shabat, Tsviel Ben
AU - Meir, Reshef
AU - Azriel, David
N1 - Publisher Copyright: © 2022 Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, UAI 2022. All right reserved.
PY - 2022
Y1 - 2022
N2 - When aggregating information from conflicting sources, one's goal is to find the truth. Most real-value truth discovery (TD) algorithms try to achieve this goal by estimating the competence of each source and then aggregating the conflicting information by weighing each source's answer proportionally to her competence. However, each of those algorithms requires more than a single source for such estimation and usually does not consider different estimation methods other than a weighted mean. Therefore, in this work we formulate, prove, and empirically test the conditions for an Empirical Bayes Estimator (EBE) to dominate the weighted mean aggregation. Our main result demonstrates that EBE, under mild conditions, can be used as a second step of any TD algorithm in order to reduce the expected error.
AB - When aggregating information from conflicting sources, one's goal is to find the truth. Most real-value truth discovery (TD) algorithms try to achieve this goal by estimating the competence of each source and then aggregating the conflicting information by weighing each source's answer proportionally to her competence. However, each of those algorithms requires more than a single source for such estimation and usually does not consider different estimation methods other than a weighted mean. Therefore, in this work we formulate, prove, and empirically test the conditions for an Empirical Bayes Estimator (EBE) to dominate the weighted mean aggregation. Our main result demonstrates that EBE, under mild conditions, can be used as a second step of any TD algorithm in order to reduce the expected error.
UR - http://www.scopus.com/inward/record.url?scp=85146146269&partnerID=8YFLogxK
M3 - منشور من مؤتمر
T3 - Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, UAI 2022
SP - 150
EP - 158
BT - Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, UAI 2022
PB - Association For Uncertainty in Artificial Intelligence (AUAI)
T2 - 38th Conference on Uncertainty in Artificial Intelligence, UAI 2022
Y2 - 1 August 2022 through 5 August 2022
ER -