Eliciting User Preferences for Personalized Multi-Objective Decision Making through Comparative Feedback

Han Shao, Lee Cohen, Avrim Blum, Yishay Mansour, Aadirupa Saha, Matthew R. Walter

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this work, we propose a multi-objective decision making framework that accommodates different user preferences over objectives, where preferences are learned via policy comparisons. Our model consists of a known Markov decision process with a vector-valued reward function, with each user having an unknown preference vector that expresses the relative importance of each objective. The goal is to efficiently compute a near-optimal policy for a given user. We consider two user feedback models. We first address the case where a user is provided with two policies and returns their preferred policy as feedback. We then move to a different user feedback model, where a user is instead provided with two small weighted sets of representative trajectories and selects the preferred one. In both cases, we suggest an algorithm that finds a nearly optimal policy for the user using a number of comparison queries that scales quasilinearly in the number of objectives.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 36 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
EditorsA. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, S. Levine
ISBN (Electronic)9781713899921
StatePublished - 2023
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States
Duration: 10 Dec 202316 Dec 2023

Publication series

NameAdvances in Neural Information Processing Systems
Volume36

Conference

Conference37th Conference on Neural Information Processing Systems, NeurIPS 2023
Country/TerritoryUnited States
CityNew Orleans
Period10/12/2316/12/23

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Cite this