Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi2O2Se

Cheng Chen, Meixiao Wang, Jinxiong Wu, Huixia Fu, Haifeng Yang, Zhen Tian, Teng Tu, Han Peng, Yan Sun, Xiang Xu, Juan Jiang, Niels B. M. Schroter, Yiwei Li, Ding Pei, Shuai Liu, Sandy A. Ekahana, Hongtao Yuan, Jiamin Xue, Gang Li, Jinfeng JiaZhongkai Liu, Binghai Yan, Hailin Peng, Yulin Chen

Research output: Contribution to journalArticlepeer-review


Semiconductors are essential materials that affect our everyday life in the modern world. Two-dimensional semiconductors with high mobility and moderate bandgap are particularly attractive today because of their potential application in fast, low-power, and ultrasmall/thin electronic devices. We investigate the electronic structures of a new layered air-stable oxide semiconductor, Bi2O2Se, with ultrahigh mobility (similar to 2.8 x 10(5) cm(2)/V.s at 2.0 K) and moderate bandgap (similar to 0.8 eV). Combining angle-resolved photoemission spectroscopy and scanning tunneling microscopy, we mapped out the complete band structures of Bi2O2Se with key parameters (for example, effective mass, Fermi velocity, and bandgap). The unusual spatial uniformity of the bandgap without undesired in-gap states on the sample surface with up to similar to 50% defects makes Bi2O2Se an ideal semiconductor for future electronic applications. In addition, the structural compatibility between Bi2O2Se and interesting perovskite oxides (for example, cuprate high-transition temperature superconductors and commonly used substrate material SrTiO3) further makes heterostructures between Bi2O2Se and these oxides possible platforms for realizing novel physical phenomena, such as topological superconductivity, Josephson junction field-effect transistor, new superconducting optoelectronics, and novel lasers.

Original languageEnglish
Article number8355
Number of pages6
JournalScience Advances
Issue number9
StatePublished - Sep 2018

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi2O2Se'. Together they form a unique fingerprint.

Cite this