Electronic-Resonance Coherent Anti-Stokes Raman Scattering Spectroscopy and Microscopy

Qi Tang, Baoguo Li, Jianjun Wang, Yufeng Liu, Iddo Pinkas, Hervé Rigneault, Dan Oron, Liqing Ren

Research output: Contribution to journalArticlepeer-review

Abstract

Advanced optical microscopy techniques, such as fluorescence and vibrational imaging, play a key role in science and technology. Both the sensitivity and the chemical selectivity are important for applications of these methods in biomedical research. However, there are few bioimaging techniques that could offer vibrational sensitivity and selectivity simultaneously. Here, we demonstrate electronic-resonance coherent anti-Stokes Raman scattering (ER-CARS) spectroscopy and microscopy with high sensitivity and high selectivity by using lock-in detection. With this ER-CARS strategy, we observed the low-wavenumber Raman spectra of various infrared dyes in solution at ultralow vibrational frequencies (from ∼20 to 330 cm-1) using a sharp edge filter and impulsive CARS excitation at low input power. We demonstrate low-frequency ER-CARS imaging of cells stained with infrared dyes using only 200 mW of input power, fundamentally mitigating photobleaching issues. We also show the application of ER-CARS in the detection of nonfluorescent molecules. Finally, we demonstrate the chemically selective capabilities of ER-CARS microscopy by imaging tissues stained with two different infrared dyes. These ER-CARS spectroscopy and microscopy results pave the way toward ultrasensitive Raman imaging of biological systems and present a pathway toward highly multiplexed selective imaging.

Original languageEnglish
Pages (from-to)3467-3475
Number of pages9
JournalACS Photonics
Volume11
Issue number8
DOIs
StatePublished Online - 6 Aug 2024

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Biotechnology
  • Atomic and Molecular Physics, and Optics
  • Electrical and Electronic Engineering

Cite this