Efficient Risk-Averse Reinforcement Learning

Ido Greenberg, Yinlam Chow, Mohammad Ghavamzadeh, Shie Mannor

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In risk-averse reinforcement learning (RL), the goal is to optimize some risk measure of the returns. A risk measure often focuses on the worst returns out of the agent's experience. As a result, standard methods for risk-averse RL often ignore high-return strategies. We prove that under certain conditions this inevitably leads to a local-optimum barrier, and propose a mechanism we call soft risk to bypass it. We also devise a novel cross entropy module for sampling, which (1) preserves risk aversion despite the soft risk; (2) independently improves sample efficiency. By separating the risk aversion of the sampler and the optimizer, we can sample episodes with poor conditions, yet optimize with respect to successful strategies. We combine these two concepts in CeSoR - Cross-entropy Soft-Risk optimization algorithm - which can be applied on top of any risk-averse policy gradient (PG) method. We demonstrate improved risk aversion in maze navigation, autonomous driving, and resource allocation benchmarks, including in scenarios where standard risk-averse PG completely fails. Our results and CeSoR implementation are available on Github. The stand-alone cross entropy module is available on PyPI.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
EditorsS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
ISBN (Electronic)9781713871088
StatePublished - 2022
Event36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States
Duration: 28 Nov 20229 Dec 2022

Publication series

NameAdvances in Neural Information Processing Systems
Volume35

Conference

Conference36th Conference on Neural Information Processing Systems, NeurIPS 2022
Country/TerritoryUnited States
CityNew Orleans
Period28/11/229/12/22

All Science Journal Classification (ASJC) codes

  • Information Systems
  • Signal Processing
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Efficient Risk-Averse Reinforcement Learning'. Together they form a unique fingerprint.

Cite this