TY - JOUR
T1 - Efficient reduction for diagnosing Hopf bifurcation in delay differential systems
T2 - Applications to cloud-rain models
AU - Chekroun, Mickael D.
AU - Koren, Ilan
AU - Liu, Honghu
N1 - We are grateful to the anonymous reviewers for their valuable suggestions and insightful comments. This work has been partially supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program [Grant Agreement No. 810370 (M.D.C. and I.K.)] and by the U.S. National Science Foundation (NSF) [Grant No. DMS-1616450 (H.L.)].
PY - 2020/5/15
Y1 - 2020/5/15
N2 - By means of Galerkin-Koornwinder (GK) approximations, an efficient reduction approach to the Stuart-Landau (SL) normal form and center manifold is presented for a broad class of nonlinear systems of delay differential equations that covers the cases of discrete as well as distributed delays. The focus is on the Hopf bifurcation as a consequence of the critical equilibrium's destabilization resulting from an eigenpair crossing the imaginary axis. The nature of the resulting Hopf bifurcation (super- or subcritical) is then characterized by the inspection of a Lyapunov coefficient easy to determine based on the model's coefficients and delay parameters. We believe that our approach, which does not rely too much on functional analysis considerations but more on analytic calculations, is suitable to concrete situations arising in physics applications. Thus, using this GK approach to the Lyapunov coefficient and the SL normal form, the occurrence of Hopf bifurcations in the cloud-rain delay models of Koren and Feingold (KF) on one hand and Koren, Tziperman, and Feingold on the other are analyzed. Noteworthy is the existence of the KF model of large regions of the parameter space for which subcritical and supercritical Hopf bifurcations coexist. These regions are determined, in particular, by the intensity of the KF model's nonlinear effects. "Islands" of supercritical Hopf bifurcations are shown to exist within a subcritical Hopf bifurcation "sea"; these islands being bordered by double-Hopf bifurcations occurring when the linearized dynamics at the critical equilibrium exhibit two pairs of purely imaginary eigenvalues.
AB - By means of Galerkin-Koornwinder (GK) approximations, an efficient reduction approach to the Stuart-Landau (SL) normal form and center manifold is presented for a broad class of nonlinear systems of delay differential equations that covers the cases of discrete as well as distributed delays. The focus is on the Hopf bifurcation as a consequence of the critical equilibrium's destabilization resulting from an eigenpair crossing the imaginary axis. The nature of the resulting Hopf bifurcation (super- or subcritical) is then characterized by the inspection of a Lyapunov coefficient easy to determine based on the model's coefficients and delay parameters. We believe that our approach, which does not rely too much on functional analysis considerations but more on analytic calculations, is suitable to concrete situations arising in physics applications. Thus, using this GK approach to the Lyapunov coefficient and the SL normal form, the occurrence of Hopf bifurcations in the cloud-rain delay models of Koren and Feingold (KF) on one hand and Koren, Tziperman, and Feingold on the other are analyzed. Noteworthy is the existence of the KF model of large regions of the parameter space for which subcritical and supercritical Hopf bifurcations coexist. These regions are determined, in particular, by the intensity of the KF model's nonlinear effects. "Islands" of supercritical Hopf bifurcations are shown to exist within a subcritical Hopf bifurcation "sea"; these islands being bordered by double-Hopf bifurcations occurring when the linearized dynamics at the critical equilibrium exhibit two pairs of purely imaginary eigenvalues.
UR - http://www.scopus.com/inward/record.url?scp=85085909968&partnerID=8YFLogxK
U2 - 10.1063/5.0004697
DO - 10.1063/5.0004697
M3 - مقالة
SN - 1054-1500
VL - 30
JO - Chaos
JF - Chaos
IS - 5
M1 - 053130
ER -