Efficient MDP Analysis for Selfish-Mining in Blockchains

Roi Bar Zur, Ittay Eyal, Aviv Tamar

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A proof of work (PoW) blockchain protocol distributes rewards to its participants, called miners, according to their share of the total computational power. Sufficiently large miners can perform selfish mining - deviate from the protocol to gain more than their fair share. Such systems are thus secure if all miners are smaller than a threshold size so their best response is following the protocol. To find the threshold, one has to identify the optimal strategy for miners of different sizes, i.e., solve a Markov Decision Process (MDP). However, because of the PoW difficulty adjustment mechanism, the miners' utility is a non-linear ratio function. We therefore call this an Average Reward Ratio (ARR) MDP. Sapirshtein et al. were the frst to solve ARR MDPs by solving a series of standard MDPs that converge to the ARR MDP solution. In this work, we present a novel technique for solving an ARR MDP by solving a single standard MDP. The crux of our approach is to augment the MDP such that it terminates randomly, within an expected number of rounds. We call this Probabilistic Termination Optimization (PTO), and the technique applies to any MDP whose utility is a ratio function. We bound the approximation error of PTO - it is inversely proportional to the expected number of rounds before termination, a parameter that we control. Empirically, PTO's complexity is an order of magnitude lower than the state of the art. PTO can be easily applied to different blockchains. We use it to tighten the bound on the threshold for selfish mining in Ethereum.

Original languageEnglish
Title of host publicationAFT 2020 - Proceedings of the 2nd ACM Conference on Advances in Financial Technologies
Pages113-131
Number of pages19
ISBN (Electronic)9781450381390
DOIs
StatePublished - 21 Oct 2020
Event2nd ACM Conference on Advances in Financial Technologies, AFT 2020 - Virtual, Online, United States
Duration: 21 Oct 202023 Oct 2020

Publication series

NameAFT 2020 - Proceedings of the 2nd ACM Conference on Advances in Financial Technologies

Conference

Conference2nd ACM Conference on Advances in Financial Technologies, AFT 2020
Country/TerritoryUnited States
CityVirtual, Online
Period21/10/2023/10/20

Keywords

  • Bitcoin
  • Blockchain
  • Cryptocurrency
  • Ethereum
  • Markov Decision Process
  • Optimal Selfish Mining
  • Proof of Work
  • Selfish Mining

All Science Journal Classification (ASJC) codes

  • Accounting
  • Computer Science Applications
  • Finance

Fingerprint

Dive into the research topics of 'Efficient MDP Analysis for Selfish-Mining in Blockchains'. Together they form a unique fingerprint.

Cite this