Efficient Interactive Proofs for Non-Deterministic Bounded Space

Joshua Cook, Ron D. Rothblum

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The celebrated IP = PSPACE Theorem gives an efficient interactive proof for any bounded-space algorithm. In this work we study interactive proofs for non-deterministic bounded space computations. While Savitch’s Theorem shows that nondeterministic bounded-space algorithms can be simulated by deterministic bounded-space algorithms, this simulation has a quadratic overhead. We give interactive protocols for nondeterministic algorithms directly to get faster verifiers. More specifically, for any non-deterministic space S algorithm, we construct an interactive proof in which the verifier runs in time Õ(n + S2). This improves on the best previous bound of Õ(n + S3) and matches the result for deterministic space bounded algorithms, up to polylog(S) factors. We further generalize to alternating bounded space algorithms. For any language L decided by a time T, space S algorithm that uses d alternations, we construct an interactive proof in which the verifier runs in time Õ(n + S log(T) + Sd) and the prover runs in time 2O(S). For d = O(log(T)), this matches the best known interactive proofs for deterministic algorithms, up to polylog(S) factors, and improves on the previous best verifier time for nondeterministic algorithms by a factor of log(T). We also improve the best prior verifier time for unbounded alternations by a factor of S. Using known connections of bounded alternation algorithms to bounded depth circuits, we also obtain faster verifiers for bounded depth circuits with unbounded fan-in.

Original languageEnglish
Title of host publicationApproximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2023
EditorsNicole Megow, Adam Smith
ISBN (Electronic)9783959772969
DOIs
StatePublished - Sep 2023
Event26th International Conference on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2023 and the 27th International Conference on Randomization and Computation, RANDOM 2023 - Atlanta, United States
Duration: 11 Sep 202313 Sep 2023

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume275

Conference

Conference26th International Conference on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2023 and the 27th International Conference on Randomization and Computation, RANDOM 2023
Country/TerritoryUnited States
CityAtlanta
Period11/09/2313/09/23

Keywords

  • AC0[2]
  • Alternating Algorithms
  • Doubly Efficient Proofs
  • Interactive Proofs

All Science Journal Classification (ASJC) codes

  • Software

Fingerprint

Dive into the research topics of 'Efficient Interactive Proofs for Non-Deterministic Bounded Space'. Together they form a unique fingerprint.

Cite this