TY - GEN
T1 - Efficient Interactive Proofs for Non-Deterministic Bounded Space
AU - Cook, Joshua
AU - Rothblum, Ron D.
N1 - Publisher Copyright: © 2023 Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. All rights reserved.
PY - 2023/9
Y1 - 2023/9
N2 - The celebrated IP = PSPACE Theorem gives an efficient interactive proof for any bounded-space algorithm. In this work we study interactive proofs for non-deterministic bounded space computations. While Savitch’s Theorem shows that nondeterministic bounded-space algorithms can be simulated by deterministic bounded-space algorithms, this simulation has a quadratic overhead. We give interactive protocols for nondeterministic algorithms directly to get faster verifiers. More specifically, for any non-deterministic space S algorithm, we construct an interactive proof in which the verifier runs in time Õ(n + S2). This improves on the best previous bound of Õ(n + S3) and matches the result for deterministic space bounded algorithms, up to polylog(S) factors. We further generalize to alternating bounded space algorithms. For any language L decided by a time T, space S algorithm that uses d alternations, we construct an interactive proof in which the verifier runs in time Õ(n + S log(T) + Sd) and the prover runs in time 2O(S). For d = O(log(T)), this matches the best known interactive proofs for deterministic algorithms, up to polylog(S) factors, and improves on the previous best verifier time for nondeterministic algorithms by a factor of log(T). We also improve the best prior verifier time for unbounded alternations by a factor of S. Using known connections of bounded alternation algorithms to bounded depth circuits, we also obtain faster verifiers for bounded depth circuits with unbounded fan-in.
AB - The celebrated IP = PSPACE Theorem gives an efficient interactive proof for any bounded-space algorithm. In this work we study interactive proofs for non-deterministic bounded space computations. While Savitch’s Theorem shows that nondeterministic bounded-space algorithms can be simulated by deterministic bounded-space algorithms, this simulation has a quadratic overhead. We give interactive protocols for nondeterministic algorithms directly to get faster verifiers. More specifically, for any non-deterministic space S algorithm, we construct an interactive proof in which the verifier runs in time Õ(n + S2). This improves on the best previous bound of Õ(n + S3) and matches the result for deterministic space bounded algorithms, up to polylog(S) factors. We further generalize to alternating bounded space algorithms. For any language L decided by a time T, space S algorithm that uses d alternations, we construct an interactive proof in which the verifier runs in time Õ(n + S log(T) + Sd) and the prover runs in time 2O(S). For d = O(log(T)), this matches the best known interactive proofs for deterministic algorithms, up to polylog(S) factors, and improves on the previous best verifier time for nondeterministic algorithms by a factor of log(T). We also improve the best prior verifier time for unbounded alternations by a factor of S. Using known connections of bounded alternation algorithms to bounded depth circuits, we also obtain faster verifiers for bounded depth circuits with unbounded fan-in.
KW - AC0[2]
KW - Alternating Algorithms
KW - Doubly Efficient Proofs
KW - Interactive Proofs
UR - http://www.scopus.com/inward/record.url?scp=85172006193&partnerID=8YFLogxK
U2 - https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.47
DO - https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.47
M3 - منشور من مؤتمر
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2023
A2 - Megow, Nicole
A2 - Smith, Adam
T2 - 26th International Conference on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2023 and the 27th International Conference on Randomization and Computation, RANDOM 2023
Y2 - 11 September 2023 through 13 September 2023
ER -