TY - GEN
T1 - Efficient fully dynamic elimination forests with applications to detecting long paths and cycles
AU - Chen, Jiehua
AU - Czerwiński, Wojciech
AU - Disser, Yann
AU - Feldmann, Andreas Emil
AU - Hermelin, Danny
AU - Nadara, Wojciech
AU - Pilipczuk, Marcin
AU - Pilipczuk, Michał
AU - Sorge, Manuel
AU - Wróblewski, Bartłomiej
AU - Zych-Pawlewicz, Anna
N1 - Publisher Copyright: Copyright © 2021 by SIAM
PY - 2021/1/1
Y1 - 2021/1/1
N2 - We present a data structure that in a dynamic graph of treedepth at most d, which is modified over time by edge insertions and deletions, maintains an optimum-height elimination forest. The data structure achieves worst-case update time 2O(d2), which matches the best known parameter dependency in the running time of a static fpt algorithm for computing the treedepth of a graph. This improves a result of Dvořák et al. [ESA 2014], who for the same problem achieved update time f(d) for some non-elementary (i.e. tower-exponential) function f. As a by-product, we improve known upper bounds on the sizes of minimal obstructions for having treedepth d from doubly-exponential in d to dO(d). As applications, we design new fully dynamic parameterized data structures for detecting long paths and cycles in general graphs. More precisely, for a fixed parameter k and a dynamic graph G, modified over time by edge insertions and deletions, our data structures maintain answers to the following queries: • Does G contain a simple path on k vertices? • Does G contain a simple cycle on at least k vertices? In the first case, the data structure achieves amortized update time 2O(k2). In the second case, the amortized update time is 2O(k4) + O(k log n). In both cases we assume access to a dictionary on the edges of G.
AB - We present a data structure that in a dynamic graph of treedepth at most d, which is modified over time by edge insertions and deletions, maintains an optimum-height elimination forest. The data structure achieves worst-case update time 2O(d2), which matches the best known parameter dependency in the running time of a static fpt algorithm for computing the treedepth of a graph. This improves a result of Dvořák et al. [ESA 2014], who for the same problem achieved update time f(d) for some non-elementary (i.e. tower-exponential) function f. As a by-product, we improve known upper bounds on the sizes of minimal obstructions for having treedepth d from doubly-exponential in d to dO(d). As applications, we design new fully dynamic parameterized data structures for detecting long paths and cycles in general graphs. More precisely, for a fixed parameter k and a dynamic graph G, modified over time by edge insertions and deletions, our data structures maintain answers to the following queries: • Does G contain a simple path on k vertices? • Does G contain a simple cycle on at least k vertices? In the first case, the data structure achieves amortized update time 2O(k2). In the second case, the amortized update time is 2O(k4) + O(k log n). In both cases we assume access to a dictionary on the edges of G.
UR - http://www.scopus.com/inward/record.url?scp=85105334832&partnerID=8YFLogxK
M3 - Conference contribution
T3 - Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
SP - 796
EP - 809
BT - ACM-SIAM Symposium on Discrete Algorithms, SODA 2021
A2 - Marx, Daniel
T2 - 32nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2021
Y2 - 10 January 2021 through 13 January 2021
ER -