Abstract
We develop and analyze efficient "coordinate-wise" methods for finding the leading eigenvector, where each step involves only a vector-vector product. We establish global convergence with overall runtime guarantees that are at least as good as Lanczos's method and dominate it for slowly decaying spectrum. Our methods are based on combining a shift-and-invert approach with coordinate-wise algorithms for linear regression.
Original language | American English |
---|---|
Journal | arXiv e-prints |
State | Published - 1 Feb 2017 |
Keywords
- coordinate descent
- eigenvalue problem
- power method
- shift-and-invert