Efficient circuit-based PSI with linear communication

Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, Avishay Yanai

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We present a new protocol for computing a circuit which implements the private set intersection functionality (PSI). Using circuits for this task is advantageous over the usage of specific protocols for PSI, since many applications of PSI do not need to compute the intersection itself but rather functions based on the items in the intersection. Our protocol is the first circuit-based PSI protocol to achieve linear communication complexity. It is also concretely more efficient than all previous circuit-based PSI protocols. For example, for sets of size 220 it improves the communication of the recent work of Pinkas et al. (EUROCRYPT’18) by more than 10 times, and improves the run time by a factor of 2.8x in the LAN setting, and by a factor of 5.8x in the WAN setting. Our protocol is based on the usage of a protocol for computing oblivious programmable pseudo-random functions (OPPRF), and more specifically on our technique to amortize the cost of batching together multiple invocations of OPPRF.

Original languageEnglish
Title of host publicationAdvances in Cryptology – EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings
EditorsVincent Rijmen, Yuval Ishai
PublisherSpringer Verlag
Pages122-153
Number of pages32
ISBN (Print)9783030176587
DOIs
StatePublished - 2019
Event38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Eurocrypt 2019 - Darmstadt, Germany
Duration: 19 May 201923 May 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11478 LNCS

Conference

Conference38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Eurocrypt 2019
Country/TerritoryGermany
CityDarmstadt
Period19/05/1923/05/19

Keywords

  • Private Set Intersection
  • Secure computation

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Efficient circuit-based PSI with linear communication'. Together they form a unique fingerprint.

Cite this