TY - JOUR
T1 - Effect size quantification for interrupted time series analysis
T2 - implementation in R and analysis for Covid-19 research
AU - Travis-Lumer, Yael
AU - Goldberg, Yair
AU - Levine, Stephen Z.
N1 - Publisher Copyright: © 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: Interrupted time series (ITS) analysis is a time series regression model that aims to evaluate the effect of an intervention on an outcome of interest. ITS analysis is a quasi-experimental study design instrumental in situations where natural experiments occur, gaining popularity, particularly due to the Covid-19 pandemic. However, challenges, including the lack of a control group, have impeded the quantification of the effect size in ITS. The current paper proposes a method and develops a user-friendly R package to quantify the effect size of an ITS regression model for continuous and count outcomes, with or without seasonal adjustment. Results: The effect size presented in this work, together with its corresponding 95% confidence interval (CI) and P-value, is based on the ITS model-based fitted values and the predicted counterfactual (the exposed period had the intervention not occurred) values. A user-friendly R package to fit an ITS and estimate the effect size was developed and accompanies this paper. To illustrate, we implemented a nation population-based ITS study from January 2001 to May 2021 covering the all-cause mortality of Israel (n = 9,350 thousand) to quantify the effect size of Covid-19 exposure on mortality rates. In the period unexposed to the Covid-19 pandemic, the mortality rate decreased over time and was expected to continue decreasing had Covid-19 not occurred. In contrast, the period exposed to the Covid-19 pandemic was associated with an increased all-cause mortality rate (relative risk = 1.11, 95% CI = 1.04, 1.18, P < 0.001). Conclusion: For the first time, the effect size in ITS: was quantified, can be estimated by end-users with an R package we developed, and was demonstrated with data showing an increase in mortality following the Covid-19 pandemic. ITS effect size reporting can assist public health policy makers in assessing the magnitude of the entire intervention effect using a single, readily understood measure.
AB - Background: Interrupted time series (ITS) analysis is a time series regression model that aims to evaluate the effect of an intervention on an outcome of interest. ITS analysis is a quasi-experimental study design instrumental in situations where natural experiments occur, gaining popularity, particularly due to the Covid-19 pandemic. However, challenges, including the lack of a control group, have impeded the quantification of the effect size in ITS. The current paper proposes a method and develops a user-friendly R package to quantify the effect size of an ITS regression model for continuous and count outcomes, with or without seasonal adjustment. Results: The effect size presented in this work, together with its corresponding 95% confidence interval (CI) and P-value, is based on the ITS model-based fitted values and the predicted counterfactual (the exposed period had the intervention not occurred) values. A user-friendly R package to fit an ITS and estimate the effect size was developed and accompanies this paper. To illustrate, we implemented a nation population-based ITS study from January 2001 to May 2021 covering the all-cause mortality of Israel (n = 9,350 thousand) to quantify the effect size of Covid-19 exposure on mortality rates. In the period unexposed to the Covid-19 pandemic, the mortality rate decreased over time and was expected to continue decreasing had Covid-19 not occurred. In contrast, the period exposed to the Covid-19 pandemic was associated with an increased all-cause mortality rate (relative risk = 1.11, 95% CI = 1.04, 1.18, P < 0.001). Conclusion: For the first time, the effect size in ITS: was quantified, can be estimated by end-users with an R package we developed, and was demonstrated with data showing an increase in mortality following the Covid-19 pandemic. ITS effect size reporting can assist public health policy makers in assessing the magnitude of the entire intervention effect using a single, readily understood measure.
KW - Cohen’s d
KW - Covid-19
KW - Effect size
KW - Interrupted time series
KW - Mortality
KW - Relative risk
UR - http://www.scopus.com/inward/record.url?scp=85141764600&partnerID=8YFLogxK
U2 - 10.1186/s12982-022-00118-7
DO - 10.1186/s12982-022-00118-7
M3 - مقالة
C2 - 36369014
SN - 1742-7622
VL - 19
JO - Emerging Themes in Epidemiology
JF - Emerging Themes in Epidemiology
IS - 1
M1 - 9
ER -