Effect of scale and surface chemistry on the mechanical properties of carbon nanotubes-based composites

Noa Lachman, Adam Green, Noa Iuster, Jean Paul Lellouche, H. Daniel Wagner

Research output: Contribution to journalArticlepeer-review

Abstract

In this article, Multi-Walled Carbon Nanotubes (MWCNTs) of varying diameters, both untreated and polycarboxylated, were dispersed at constant weight percentage in an epoxy matrix, and resulting fracture toughnesses (K Ic) were measured in each case. We show that changing the MWCNT diameter has two effects on the composite fracture toughness: (i) a small MWCNT diameter enables larger interfacial surface for adhesion maximization, which increases toughness; (ii) at the same time, it limits the available pull-out energy and reduces the MWCNT ability to homogeneously disperse in the matrix due to this same large active surface: this decreases toughness. Most commercially available MWCNTs have a length range of several μm, thus an optimal diameter exists which depends on MWCNT wall thickness and surface treatment. Such optimal diameter maximizes pull-out energy and thus composite fracture toughness. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012 Carbon nanotubes (CNTs), when sufficiently dispersed in a polymer matrix, offer exceptional mechanical properties as reinforcement fillers in nanocomposite materials. In addition to homogeneous dispersion, optimization of the interfacial bonding between both contacting phases is essential for CNT incorporation to reach full potential. In this study, multiwalled CNTs of various diameters, both untreated pristine and polycarboxylated, were dispersed at equal weight percentage in an epoxy matrix, and resulting fracture toughnesses have been measured. An optimal diameter exists depending on CNT thickness and surface treatment.

Original languageEnglish
Pages (from-to)957-962
Number of pages6
JournalJournal of Polymer Science, Part B: Polymer Physics
Volume50
Issue number14
Early online date28 Apr 2012
DOIs
StatePublished - 15 Jul 2012

Keywords

  • Structure-property relation
  • nanocomposites
  • toughness

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Physical and Theoretical Chemistry
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Effect of scale and surface chemistry on the mechanical properties of carbon nanotubes-based composites'. Together they form a unique fingerprint.

Cite this