Effect of near-surface wind speed and gustiness on horizontal and vertical porous medium gas transport and gas exchange with the atmosphere

T. G. Poulsen, A. Furman, D. Liberzon

Research output: Contribution to journalArticlepeer-review

Abstract

Effects of wind speed and wind gustiness on horizontal and vertical subsurface gas transport and subsurface–atmosphere gas exchange were investigated experimentally using a 40 cm × 40 cm, 35-cm-deep stainless steel container, filled with a dry granular porous medium (crushed basalt) of 2–4-mm grain size. Experiments used CO2 and O2 as tracer gases and were conducted under both steady and gusty wind at speeds ranging from 0 to 5.6 m s−1. Tracer gas breakthrough curves were measured at 20 locations within the porous medium to assess both horizontal and vertical gas movement. Results indicated that horizontal gas movement in wind-exposed porous materials is important, especially near the wind-exposed surface, and suggested considerable effects of both wind speed and wind gustiness on both horizontal and vertical gas transport inside the porous medium as well as subsurface–atmospheric gas exchange. Although wind-induced subsurface gas transport is likely to be multidimensional, one-dimensional model simulations indicated that vertical transport is an adequate approximation of the resulting average gas transport and exchange with the atmosphere over a larger area. Highlights: Experimental assessment of near-surface gas movement in wind-exposed porous medium Near-surface gas movement in wind-exposed porous media occurs both horizontally and vertically. Wind speed and wind gustiness affect gas movement near the soil–atmosphere interface. Wind-induced bulk subsurface-to-atmosphere gas mass transport may be approximated as vertical.

Original languageEnglish
Pages (from-to)279-289
Number of pages11
JournalEuropean Journal of Soil Science
Volume69
Issue number2
DOIs
StatePublished - Mar 2018

All Science Journal Classification (ASJC) codes

  • Soil Science

Fingerprint

Dive into the research topics of 'Effect of near-surface wind speed and gustiness on horizontal and vertical porous medium gas transport and gas exchange with the atmosphere'. Together they form a unique fingerprint.

Cite this