Effect of heat-flux boundary conditions on the Rayleigh-Bénard instability in a rarefied gas

Y. Ben-Ami, A. Manela

Research output: Contribution to journalArticlepeer-review

Abstract

We consider the effect of heat-flux boundary conditions, replacing the previously studied isothermal wall conditions, on the Rayleigh-Bénard instability in a rarefied gas. The problem is investigated in the limit of small Knudsen numbers, by means of a linear stability analysis of a slip flow model, and the direct simulation Monte Carlo method. In the latter, a noniterative algorithm is applied to implement the heat-flux conditions. The results delineate the instability domain in the parameters plane of the Knudsen number (Kn), Froude number (Fr), and walls reference temperature ratio. The heat-flux conditions result in a significant destabilizing effect, extending instability to larger Knudsen numbers. At large Fr, the Boussinesq limit is recovered, and transition to instability is governed by a critical value of the Rayleigh number. With decreasing Fr, gas compressibility becomes dominant, confining the convection layer to the vicinity of the upper cold wall. Asymptotic analysis of the low-Fr limit is carried out, to highlight the impact of difference in thermal conditions. The Monte Carlo scheme is applied to investigate system instability at supercritical states, where walls heat-flux conditions lead to elevated shear stresses. Nonmonotonic variations in the walls shear stress with Kn are observed and discussed.

Original languageEnglish
Article number033402
JournalPhysical Review Fluids
Volume4
Issue number3
DOIs
StatePublished - Mar 2019

All Science Journal Classification (ASJC) codes

  • Computational Mechanics
  • Modelling and Simulation
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Effect of heat-flux boundary conditions on the Rayleigh-Bénard instability in a rarefied gas'. Together they form a unique fingerprint.

Cite this