Early detection of fraud storms in the cloud

Hani Neuvirth, Yehuda Finkelstein, Amit Hilbuch, Shai Nahum, Daniel Alon, Elad Yom-Tov

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Cloud computing resources are sometimes hijacked for fraudulent use. While some fraudulent use manifests as a small-scale resource consumption, a more serious type of fraud is that of fraud storms, which are events of large-scale fraudulent use. These events begin when fraudulent users discover new vulnerabilities in the sign up process, which they then exploit in mass. The ability to perform early detection of these storms is a critical component of any cloud-based public computing system. In this work we analyze telemetry data from Microsoft Azure to detect fraud storms and raise early alerts on sudden increases in fraudulent use. The use of machine learning approaches to identify such anomalous events involves two inherent challenges: the scarcity of these events, and at the same time, the high frequency of anomalous events in cloud systems. We compare the performance of a supervised approach to the one achieved by an unsupervised, multivariate anomaly detection framework. We further evaluate the system performance taking into account practical considerations of robustness in the presence of missing values, and minimization of the model’s data collection period. This paper describes the system, as well as the underlying machine learning algorithms applied. A beta version of the system is deployed and used to continuously control fraud levels in Azure.

Original languageEnglish
Title of host publicationMachine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2015, Proceedings
EditorsBianca Zadrozny, Francesco Bonchi, Jaime Cardoso, Ricard Gavalda, Myra Spiliopoulou, Dino Pedreschi, Albert Bifet, Michael May
PublisherSpringer Verlag
Pages53-67
Number of pages15
ISBN (Print)9783319234601
DOIs
StatePublished - 2015
Externally publishedYes
EventEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2015 - Porto, Portugal
Duration: 7 Sep 201511 Sep 2015

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9286

Conference

ConferenceEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2015
Country/TerritoryPortugal
CityPorto
Period7/09/1511/09/15

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Cite this