Dynamically-balanced folded-beam suspensions

Shai Shmulevich, Inbar Hotzen, David Elata

Research output: Contribution to journalConference articlepeer-review

Abstract

We present a complete methodology for designing a new folded-beam suspension which responds as a linear spring at the fundamental resonance. This is in sharp contrast to the response of standard folded-beam suspensions. The static response of the standard folded-beam suspension is linear over a wide range of motions. But, surprisingly, the dynamic response of the standard folded-beam suspension is strongly nonlinear for small motion amplitudes that are larger than the width of the flexure beams. We have previously shown experimental evidence of this problem with the standard suspension. In contrast, the stiffness of the new dynamically balanced folded-beam suspension is not affected by motion amplitude. In the present work we show new experimental evidence demonstrating that the new design solves this problem.

Original languageEnglish
Article number7050925
Pages (from-to)215-218
Number of pages4
JournalProceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
Volume2015-February
Issue numberFebruary
DOIs
StatePublished - 26 Feb 2015
Event2015 28th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2015 - Estoril, Portugal
Duration: 18 Jan 201522 Jan 2015

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Dynamically-balanced folded-beam suspensions'. Together they form a unique fingerprint.

Cite this