TY - JOUR
T1 - Dual inhibition of HERs and PD-1 counteract resistance in KRASG12C-mutant head and neck cancer
AU - Novoplansky, Ofra
AU - Jagadeeshan, Sankar
AU - Prasad, Manu
AU - Yegodayev, Ksenia M.
AU - Marripati, Divyasree
AU - Shareb, Raghda Abu
AU - Greenshpan, Yariv
AU - Mathukkada, Sooraj
AU - Ben-Lulu, Talal
AU - Bhattacharya, Baisali
AU - Porgador, Angel
AU - Kong, Dexin
AU - Brägelmann, Johannes
AU - Gutkind, J. Silvio
AU - Elkabets, Moshe
N1 - Publisher Copyright: © The Author(s) 2024.
PY - 2024/12/1
Y1 - 2024/12/1
N2 - Background: Basket clinical trials targeting the KRASG12C-mutation in solid tumors have shown initial promise, including in orphan KRASG12C head and neck cancer (HNC). However, development of resistance to KRASG12C-mutant-specific inhibitors (KRASG12Ci) remains a major obstacle. Here, we investigated the intrinsic (tumor-cell autonomus) and tumor-microenvironment (TME) mechanisms of resistance to the KRASG12Ci—MRTX849 and AMG510 in a unique syngenic murine KRASG12C-mutated HNC cell line. Methods: Western-blotting was used for protein abundance and activation, overexpression, and ligand activation studies to verify the intrinsic mechanism of resistance to KRASG12Ci in KRASG12C-mutated HNC cell line, 4NQO-L. In vitro KRASG12C-acquired-resistant cells were developed from 4NQO-L (4NQO-L-AcR). MRTX849/lapatinib combination efficacy, and CD8+ T-cells depletion, were assessed in C57BL/6 J mice and supplementation of anti-PD-1 (αPD-1) to MRTX849/lapatinib was also performed in 4NQO-L– KRASG12Ci-senisitve and 4NQO-L-AcR tumors. Immunohistochemistry (IHC) and Immunoflourescence (IF) analyses were performed to profile the TME and programmed death-ligand 1 (PD-L1) expression in tumors. Results: Activation and upregulation of EGFR and HER2/3 (pan-HERs) are the intrinsic mechanism of resistance to KRASG12Ci in 4NQO-L cells, and blocking pan-HERs signaling with lapatinib enhanced MRTX849 efficacy in vitro by inhibiting the MAPK and AKT/mTOR pathways. 4NQO-L-AcR upregulated the expression of pan-HERs, and lapatinib treatment re-sensitized 4NQO-L-AcR to MRTX849. In mice, MRTX849 showed a slight anti-tumor effect, but in combination with lapatinib a significant tumor growth delay was observed, but all tumors progressed over time. Histopathology analysis of the TME revealed infiltration of CD8+ T-cells after treatment combination, and these CD8+ T-cells play a key role in MRTX849/lapatinib efficacy. MRTX849/lapatinib treatment upregulated PD-L1 overexpression in both stromal and tumor cells, which presumably suppressed CD8+ T-cells and enabled immune escape and tumor progression. Supplementation of αPD-1 prolonged the progression-free survival of 4NQO-L-bearing mice treated with MRTX849/lapatinib. MRTX849/lapatinib treatment delayed tumor growth of 4NQO-L-AcR in mice; however, the percentages of CD8+ T-cells in 4NQO-L-AcR were low, and supplementation of MRTX849/lapatinib with αPD-1 did not improve the outcome. Conclusions: Our study highlights the critical need for blocking both intrinsic and extrinsic mechanisms of resistance for the prolonged response and shows that such treatment is ineffective in KRASG12Ci-AcR tumors.
AB - Background: Basket clinical trials targeting the KRASG12C-mutation in solid tumors have shown initial promise, including in orphan KRASG12C head and neck cancer (HNC). However, development of resistance to KRASG12C-mutant-specific inhibitors (KRASG12Ci) remains a major obstacle. Here, we investigated the intrinsic (tumor-cell autonomus) and tumor-microenvironment (TME) mechanisms of resistance to the KRASG12Ci—MRTX849 and AMG510 in a unique syngenic murine KRASG12C-mutated HNC cell line. Methods: Western-blotting was used for protein abundance and activation, overexpression, and ligand activation studies to verify the intrinsic mechanism of resistance to KRASG12Ci in KRASG12C-mutated HNC cell line, 4NQO-L. In vitro KRASG12C-acquired-resistant cells were developed from 4NQO-L (4NQO-L-AcR). MRTX849/lapatinib combination efficacy, and CD8+ T-cells depletion, were assessed in C57BL/6 J mice and supplementation of anti-PD-1 (αPD-1) to MRTX849/lapatinib was also performed in 4NQO-L– KRASG12Ci-senisitve and 4NQO-L-AcR tumors. Immunohistochemistry (IHC) and Immunoflourescence (IF) analyses were performed to profile the TME and programmed death-ligand 1 (PD-L1) expression in tumors. Results: Activation and upregulation of EGFR and HER2/3 (pan-HERs) are the intrinsic mechanism of resistance to KRASG12Ci in 4NQO-L cells, and blocking pan-HERs signaling with lapatinib enhanced MRTX849 efficacy in vitro by inhibiting the MAPK and AKT/mTOR pathways. 4NQO-L-AcR upregulated the expression of pan-HERs, and lapatinib treatment re-sensitized 4NQO-L-AcR to MRTX849. In mice, MRTX849 showed a slight anti-tumor effect, but in combination with lapatinib a significant tumor growth delay was observed, but all tumors progressed over time. Histopathology analysis of the TME revealed infiltration of CD8+ T-cells after treatment combination, and these CD8+ T-cells play a key role in MRTX849/lapatinib efficacy. MRTX849/lapatinib treatment upregulated PD-L1 overexpression in both stromal and tumor cells, which presumably suppressed CD8+ T-cells and enabled immune escape and tumor progression. Supplementation of αPD-1 prolonged the progression-free survival of 4NQO-L-bearing mice treated with MRTX849/lapatinib. MRTX849/lapatinib treatment delayed tumor growth of 4NQO-L-AcR in mice; however, the percentages of CD8+ T-cells in 4NQO-L-AcR were low, and supplementation of MRTX849/lapatinib with αPD-1 did not improve the outcome. Conclusions: Our study highlights the critical need for blocking both intrinsic and extrinsic mechanisms of resistance for the prolonged response and shows that such treatment is ineffective in KRASG12Ci-AcR tumors.
KW - Adagrasib
KW - Cell-autonomous
KW - Drug resistance
KW - HER signaling
KW - Head and neck cancer
KW - KRAS mutation
KW - PD-L1/PD1
KW - Sotorasib
KW - Tumor microenvironment
UR - http://www.scopus.com/inward/record.url?scp=85209820337&partnerID=8YFLogxK
U2 - https://doi.org/10.1186/s13046-024-03227-0
DO - https://doi.org/10.1186/s13046-024-03227-0
M3 - Article
C2 - 39567998
SN - 0392-9078
VL - 43
JO - Journal of Experimental and Clinical Cancer Research
JF - Journal of Experimental and Clinical Cancer Research
IS - 1
M1 - 308
ER -