Don't Blame the Annotator: Bias Already Starts in the Annotation Instructions

Mihir Parmar, Swaroop Mishra, Mor Geva, Chitta Baral

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In recent years, progress in NLU has been driven by benchmarks. These benchmarks are typically collected by crowdsourcing, where annotators write examples based on annotation instructions crafted by dataset creators. In this work, we hypothesize that annotators pick up on patterns in the crowdsourcing instructions, which bias them to write many similar examples that are then over-represented in the collected data. We study this form of bias, termed instruction bias, in 14 recent NLU benchmarks, showing that instruction examples often exhibit concrete patterns, which are propagated by crowdworkers to the collected data. This extends previous work (Geva et al., 2019) and raises a new concern of whether we are modeling the dataset creator's instructions, rather than the task. Through a series of experiments, we show that, indeed, instruction bias can lead to overestimation of model performance, and that models struggle to generalize beyond biases originating in the crowdsourcing instructions. We further analyze the influence of instruction bias in terms of pattern frequency and model size, and derive concrete recommendations for creating future NLU benchmarks.

Original languageEnglish
Title of host publicationEACL 2023 - 17th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages1771-1781
Number of pages11
ISBN (Electronic)9781959429449
StatePublished - 2023
Externally publishedYes
Event17th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2023 - Dubrovnik, Croatia
Duration: 2 May 20236 May 2023

Publication series

NameEACL 2023 - 17th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference

Conference

Conference17th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2023
Country/TerritoryCroatia
CityDubrovnik
Period2/05/236/05/23

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Software
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Don't Blame the Annotator: Bias Already Starts in the Annotation Instructions'. Together they form a unique fingerprint.

Cite this