TY - JOUR
T1 - Dissipation-induced topological insulators
T2 - A no-go theorem and a recipe
AU - Goldstein, Moshe
N1 - Publisher Copyright: © 2019 SciPost Foundation. All Rights Reserved.
PY - 2019/11
Y1 - 2019/11
N2 - Nonequilibrium conditions are traditionally seen as detrimental to the appearance of quantum-coherent many-body phenomena, and much effort is often devoted to their elimination. Recently this approach has changed: It has been realized that driven-dissipative dynamics could be used as a resource. By proper engineering of the reservoirs and their couplings to a system, one may drive the system towards desired quantum-correlated steady states, even in the absence of internal Hamiltonian dynamics. An intriguing category of equilibrium many-particle phases are those which are distinguished by topology rather than by symmetry. A natural question thus arises: which of these topological states can be achieved as the result of dissipative Lindblad-type (Markovian) evolution? Beside its fundamental importance, it may offer novel routes to the realization of topologically-nontrivial states in quantum simulators, especially ultracold atomic gases. Here I give a general answer for Gaussian states and quadratic Lindblad evolution, mostly concentrating on the example of 2D Chern insulator states. I prove a no-go theorem stating that a finite-range Lindbladian cannot induce finite-rate exponential decay towards a unique topological pure state above 1D. I construct a recipe for creating such state by exponentially-local dynamics, or a mixed state arbitrarily close to the desired pure one via finite-range dynamics. I also address the cold-atom realization, classification, and detection of these states. Extensions to other types of topological insulators and superconductors are also discussed.
AB - Nonequilibrium conditions are traditionally seen as detrimental to the appearance of quantum-coherent many-body phenomena, and much effort is often devoted to their elimination. Recently this approach has changed: It has been realized that driven-dissipative dynamics could be used as a resource. By proper engineering of the reservoirs and their couplings to a system, one may drive the system towards desired quantum-correlated steady states, even in the absence of internal Hamiltonian dynamics. An intriguing category of equilibrium many-particle phases are those which are distinguished by topology rather than by symmetry. A natural question thus arises: which of these topological states can be achieved as the result of dissipative Lindblad-type (Markovian) evolution? Beside its fundamental importance, it may offer novel routes to the realization of topologically-nontrivial states in quantum simulators, especially ultracold atomic gases. Here I give a general answer for Gaussian states and quadratic Lindblad evolution, mostly concentrating on the example of 2D Chern insulator states. I prove a no-go theorem stating that a finite-range Lindbladian cannot induce finite-rate exponential decay towards a unique topological pure state above 1D. I construct a recipe for creating such state by exponentially-local dynamics, or a mixed state arbitrarily close to the desired pure one via finite-range dynamics. I also address the cold-atom realization, classification, and detection of these states. Extensions to other types of topological insulators and superconductors are also discussed.
UR - http://www.scopus.com/inward/record.url?scp=85080962366&partnerID=8YFLogxK
U2 - https://doi.org/10.21468/SciPostPhys.7.5.067
DO - https://doi.org/10.21468/SciPostPhys.7.5.067
M3 - مقالة
SN - 2542-4653
VL - 7
JO - SCIPOST PHYSICS
JF - SCIPOST PHYSICS
IS - 5
M1 - 067
ER -