Discovery of Single Independent Latent Variable

Uri Shaham, Jonathan Svirsky, Ori Katz, Ronen Talmon

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Latent variable discovery is a central problem in data analysis with a broad range of applications in applied science. In this work, we consider data given as an invertible mixture of two statistically independent components, and assume that one of the components is observed while the other is hidden. Our goal is to recover the hidden component. For this purpose, we propose an autoencoder equipped with a discriminator. Unlike the standard nonlinear ICA problem, which was shown to be non-identifiable, in the special case of ICA we consider here, we show that our approach can recover the component of interest up to entropy-preserving transformation. We demonstrate the performance of the proposed approach in several tasks, including image synthesis, voice cloning, and fetal ECG extraction.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
EditorsS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
ISBN (Electronic)9781713871088
StatePublished - 1 Jan 2022
Event36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States
Duration: 28 Nov 20229 Dec 2022

Publication series

NameAdvances in Neural Information Processing Systems
Volume35

Conference

Conference36th Conference on Neural Information Processing Systems, NeurIPS 2022
Country/TerritoryUnited States
CityNew Orleans
Period28/11/229/12/22

All Science Journal Classification (ASJC) codes

  • Information Systems
  • Signal Processing
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Discovery of Single Independent Latent Variable'. Together they form a unique fingerprint.

Cite this