TY - GEN
T1 - Discount factor as a regularizer in reinforcement learning
AU - Amit, Ron
AU - Meir, Ron
AU - Ciosek, Kamil
N1 - Publisher Copyright: © ICML 2020. All rights reserved.
PY - 2020
Y1 - 2020
N2 - Specifying a Reinforcement Learning (RL) task involves choosing a suitable planning horizon, which is typically modeled by a discount factor. It is known that applying RL algorithms with a lower discount factor can act as a regularizer, improving performance in the limited data regime. Yet the exact nature of this regularizer has not been investigated. In this work, we fill in this gap. For several Temporal-Difference (TD) learning methods, we show an explicit equivalence between using a reduced discount factor and adding an explicit regularization term to the algorithm s loss. Motivated by the equivalence, we empirically study this technique compared to standard L2 regularization by extensive experiments in discrete and continuous domains, using tabular and functional representations. Our experiments suggest the regularization effectiveness is strongly related to properties of the available data, such as size, distribution, and mixing rate.
AB - Specifying a Reinforcement Learning (RL) task involves choosing a suitable planning horizon, which is typically modeled by a discount factor. It is known that applying RL algorithms with a lower discount factor can act as a regularizer, improving performance in the limited data regime. Yet the exact nature of this regularizer has not been investigated. In this work, we fill in this gap. For several Temporal-Difference (TD) learning methods, we show an explicit equivalence between using a reduced discount factor and adding an explicit regularization term to the algorithm s loss. Motivated by the equivalence, we empirically study this technique compared to standard L2 regularization by extensive experiments in discrete and continuous domains, using tabular and functional representations. Our experiments suggest the regularization effectiveness is strongly related to properties of the available data, such as size, distribution, and mixing rate.
UR - http://www.scopus.com/inward/record.url?scp=85105238890&partnerID=8YFLogxK
M3 - منشور من مؤتمر
T3 - 37th International Conference on Machine Learning, ICML 2020
SP - 246
EP - 255
BT - 37th International Conference on Machine Learning, ICML 2020
A2 - Daume, Hal
A2 - Singh, Aarti
T2 - 37th International Conference on Machine Learning, ICML 2020
Y2 - 13 July 2020 through 18 July 2020
ER -