Abstract
Solid-state nuclear magnetic resonance (NMR) can shed light on atomic-level arrangements for most elements in the Periodic Table. This ability hinges on the possibility to overcome NMR's low sensitivity, particularly when dealing with unreceptive nuclei yielding ultra-wideline (>500 kHz) patterns from powdered samples. Herein, we present an experiment capable of enhancing the signals of such static samples, by transferring dipolar order from surrounding, highly polarized protons. The experiment, which we dub Dipolar-Order-based BRoadband Adiabatic INversion Cross-Polarization (DOBRAIN-CP), utilizes a Freeman-Kupče broadband inversion WURST pulse to perform CP over the wideline spectrum of the low receptivity species, while matching the low frequencies associated to 1H[sbnd]1H dipolar fields. We present analytical and numerical analyses of the spin-dynamics of DOBRAIN-CP for spin-½ nuclei, as well as for quadrupolar spins. Experimental results are also presented for spin-½, integer and half-integer quadrupolar spins; these show that although DOBRAIN-CP delivers broadband excitation and sensitivity enhancement compared to direct excitations, it does not exceed the sensitivity enhancement of the BRAIN-CP variant based on Hartmann-Hahn matching. The power requirements for DOBRAIN-CP are extremely low, yet long dipolar-order lifetimes T1D are needed to support the DOBRAIN-CP build-up times.
Original language | English |
---|---|
Article number | 107860 |
Journal | JOURNAL OF MAGNETIC RESONANCE |
Volume | 373 |
Early online date | 21 Feb 2025 |
DOIs | |
State | Published Online - 21 Feb 2025 |
All Science Journal Classification (ASJC) codes
- Biophysics
- Biochemistry
- Nuclear and High Energy Physics
- Condensed Matter Physics