Abstract
We compute the Hausdorff and Minkowski dimension of subsets of the symbolic space Σm={0,..,m−1}ℕ that are invariant under multiplication by integers. The results apply to the sets {x∈Σm:∀ k, xkx2k.. xnk =0}, where n ≥ 3. We prove that for such sets, the Hausdorff and Minkowski dimensions typically differ.
Original language | English |
---|---|
Pages (from-to) | 687-709 |
Number of pages | 23 |
Journal | Israel Journal of Mathematics |
Volume | 199 |
Issue number | 2 |
DOIs | |
State | Published - 1 Mar 2014 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Mathematics