Differentially private contextual linear bandits

Roshan Shariff, Or Sheffet

Research output: Contribution to journalConference articlepeer-review

Abstract

We study the contextual linear bandit problem, a version of the standard stochastic multi-armed bandit (MAB) problem where a learner sequentially selects actions to maximize a reward which depends also on a user provided per-round context. Though the context is chosen arbitrarily or adversarially, the reward is assumed to be a stochastic function of a feature vector that encodes the context and selected action. Our goal is to devise private learners for the contextual linear bandit problem. We first show that using the standard definition of differential privacy results in linear regret. So instead, we adopt the notion of joint differential privacy, where we assume that the action chosen on day t is only revealed to user t and thus needn't be kept private that day, only on following days. We give a general scheme converting the classic linear-UCB algorithm into a joint differentially private algorithm using the tree-based algorithm [10, 18]. We then apply either Gaussian noise or Wishart noise to achieve joint-differentially private algorithms and bound the resulting algorithms' regrets. In addition, we give the first lower bound on the additional regret any private algorithms for the MAB problem must incur.

Original languageEnglish
Pages (from-to)4296-4306
Number of pages11
JournalAdvances in Neural Information Processing Systems
Volume2018-December
StatePublished - 2018
Externally publishedYes
Event32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada
Duration: 2 Dec 20188 Dec 2018

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Differentially private contextual linear bandits'. Together they form a unique fingerprint.

Cite this