Abstract
Studies on the active pathways and the genes involved in the biosynthesis of L-phenylalanine-derived volatiles in fleshy fruits are sparse. Melon fruit rinds converted stable-isotope labeled L-phe into more than 20 volatiles. Phenylpropanes, phenylpropenes and benzenoids are apparently produced via the well-known phenylpropanoid pathway involving phenylalanine ammonia lyase (PAL) and being (E)-cinnamic acid a key intermediate. Phenethyl derivatives seemed to be derived from L-phe via a separate biosynthetic route not involving (E)-cinnamic acid and PAL. To explore for a biosynthetic route to (E)-cinnamaldehyde in melon rinds, soluble protein cell-free extracts were assayed with (E)-cinnamic acid, CoA, ATP, NADPH and MgSO4, producing (E)-cinnamaldehyde in vitro. In this context, we characterized CmCNL, a gene encoding for (E)-cinnamic acid:coenzyme A ligase, inferred to be involved in the biosynthesis of (E)-cinnamaldehyde. Additionally we describe CmBAMT, a SABATH gene family member encoding a benzoic acid:S-adenosyl-L-methionine carboxyl methyltransferase having a role in the accumulation of methyl benzoate. Our approach leads to a more comprehensive understanding of L-phe metabolism into aromatic volatiles in melon fruit.
Original language | American English |
---|---|
Pages (from-to) | 122-131 |
Number of pages | 10 |
Journal | Phytochemistry |
Volume | 148 |
DOIs | |
State | Published - 1 Apr 2018 |
Keywords
- (E)-cinnamaldehyde
- (E)-cinnamic acid:coenzyme A ligase
- Benzoic acid:S-adenosyl-L-methionine carboxyl methyltransferase
- Cucumis melo L.
- Cucurbitaceae
- L-phenylalanine metabolism
- Melon
- Methyl benzoate
- Phenylpropanoid aroma volatiles
All Science Journal Classification (ASJC) codes
- Biochemistry
- Molecular Biology
- Plant Science
- Horticulture