TY - JOUR
T1 - Development of a multimodal machine-learning fusion model to non-invasively assess ileal Crohn's disease endoscopic activity.
AU - Guez, Itai
AU - Focht, Gili
AU - Greer, Mary-Louise C.
AU - Cytter-Kuint, Ruth
AU - Pratt, Li-Tal
AU - Castro, Denise A.
AU - Turner, Dan
AU - Griffiths, Anne M.
AU - Freiman, Moti
N1 - DBLP's bibliographic metadata records provided through http://dblp.org/search/publ/api are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2022/12
Y1 - 2022/12
N2 - Background and Objective: Recurrent attentive non-invasive observation of intestinal inflammation is essential for the proper management of Crohn's disease (CD). The goal of this study was to develop and evaluate a multi-modal machine-learning (ML) model to assess ileal CD endoscopic activity by integrating information from Magnetic Resonance Enterography (MRE) and biochemical biomarkers. Methods: We obtained MRE, biochemical and ileocolonoscopy data from the multi-center ImageKids study database. We developed an optimized multimodal fusion ML model to non-invasively assess terminal ileum (TI) endoscopic disease activity in CD from MRE data. We determined the most informative features for model development using a permutation feature importance technique. We assessed model performance in comparison to the clinically recommended linear-regression MRE model in an experimental setup that consisted of stratified 2-fold validation, repeated 50 times, with the ileocolonoscopy-based Simple Endoscopic Score for CD at the TI (TI SES-CD) as a reference. We used the predictions’ mean-squared-error (MSE) and the receiver operation characteristics (ROC) area under curve (AUC) for active disease classification (TI SEC-CD≥3) as performance metrics. Results: 121 subjects out of the 240 subjects in the ImageKids study cohort had all required information (Non-active CD: 62 [51%], active CD: 59 [49%]). Length of disease segment and normalized biochemical biomarkers were the most informative features. The optimized fusion model performed better than the clinically recommended model determined by both a better median test MSE distribution (7.73 vs. 8.8, Wilcoxon test, p<1e-5) and a better aggregated AUC over the folds (0.84 vs. 0.8, DeLong's test, p<1e-9). Conclusions: Optimized ML models for ileal CD endoscopic activity assessment have the potential to enable accurate and non-invasive attentive observation of intestinal inflammation in CD patients. The presented model is available at https://tcml-bme.github.io/ML_SESCD.html.
AB - Background and Objective: Recurrent attentive non-invasive observation of intestinal inflammation is essential for the proper management of Crohn's disease (CD). The goal of this study was to develop and evaluate a multi-modal machine-learning (ML) model to assess ileal CD endoscopic activity by integrating information from Magnetic Resonance Enterography (MRE) and biochemical biomarkers. Methods: We obtained MRE, biochemical and ileocolonoscopy data from the multi-center ImageKids study database. We developed an optimized multimodal fusion ML model to non-invasively assess terminal ileum (TI) endoscopic disease activity in CD from MRE data. We determined the most informative features for model development using a permutation feature importance technique. We assessed model performance in comparison to the clinically recommended linear-regression MRE model in an experimental setup that consisted of stratified 2-fold validation, repeated 50 times, with the ileocolonoscopy-based Simple Endoscopic Score for CD at the TI (TI SES-CD) as a reference. We used the predictions’ mean-squared-error (MSE) and the receiver operation characteristics (ROC) area under curve (AUC) for active disease classification (TI SEC-CD≥3) as performance metrics. Results: 121 subjects out of the 240 subjects in the ImageKids study cohort had all required information (Non-active CD: 62 [51%], active CD: 59 [49%]). Length of disease segment and normalized biochemical biomarkers were the most informative features. The optimized fusion model performed better than the clinically recommended model determined by both a better median test MSE distribution (7.73 vs. 8.8, Wilcoxon test, p<1e-5) and a better aggregated AUC over the folds (0.84 vs. 0.8, DeLong's test, p<1e-9). Conclusions: Optimized ML models for ileal CD endoscopic activity assessment have the potential to enable accurate and non-invasive attentive observation of intestinal inflammation in CD patients. The presented model is available at https://tcml-bme.github.io/ML_SESCD.html.
KW - Crohn's disease
KW - Machine-learning
KW - Magnetic Resonance Enterography
KW - Multimodal Learning in Medical Imaging and Informatics
UR - http://www.scopus.com/inward/record.url?scp=85141482162&partnerID=8YFLogxK
U2 - https://doi.org/10.1016/J.CMPB.2022.107207
DO - https://doi.org/10.1016/J.CMPB.2022.107207
M3 - مقالة
C2 - 36375417
VL - 227
SP - 107207
JO - Comput. Methods Programs Biomed.
JF - Comput. Methods Programs Biomed.
M1 - 107207
ER -