TY - JOUR
T1 - Detecting Zero-Inflated Genes in Single-Cell Transcriptomics Data
AU - Clivio, Oscar
AU - Lopez, Romain
AU - Regier, Jeffrey
AU - Gayoso, Adam
AU - Jordan, Michael I
AU - Yosef, Nir
PY - 2019/10/7
Y1 - 2019/10/7
N2 - In single-cell RNA sequencing data, biological processes or technical factors may induce an overabundance of zero measurements. Existing probabilistic approaches to interpreting these data either model all genes as zero-inflated, or none. But the overabundance of zeros might be gene-specific. Hence, we propose the AutoZI model, which, for each gene, places a spike-and-slab prior on a mixture assignment between a negative binomial (NB) component and a zero-inflated negative binomial (ZINB) component. We approximate the posterior distribution under this model using variational inference, and employ Bayesian decision theory to decide whether each gene is zero-inflated. On simulated data, AutoZI outperforms the alternatives. On negative control data, AutoZI retrieves predictions consistent to a previous study on ERCC spike-ins and recovers similar results on control RNAs. Applied to several datasets and instances of the 10x Chromium protocol, AutoZI allows both biological and technical interpretations of zero-inflation. Finally, AutoZI’s decisions on mouse embyronic stem-cells suggest that zero-inflation might be due to transcriptional bursting.
AB - In single-cell RNA sequencing data, biological processes or technical factors may induce an overabundance of zero measurements. Existing probabilistic approaches to interpreting these data either model all genes as zero-inflated, or none. But the overabundance of zeros might be gene-specific. Hence, we propose the AutoZI model, which, for each gene, places a spike-and-slab prior on a mixture assignment between a negative binomial (NB) component and a zero-inflated negative binomial (ZINB) component. We approximate the posterior distribution under this model using variational inference, and employ Bayesian decision theory to decide whether each gene is zero-inflated. On simulated data, AutoZI outperforms the alternatives. On negative control data, AutoZI retrieves predictions consistent to a previous study on ERCC spike-ins and recovers similar results on control RNAs. Applied to several datasets and instances of the 10x Chromium protocol, AutoZI allows both biological and technical interpretations of zero-inflation. Finally, AutoZI’s decisions on mouse embyronic stem-cells suggest that zero-inflation might be due to transcriptional bursting.
M3 - مقالة
JO - bioArxiv
JF - bioArxiv
ER -