Detecting Rewards Deterioration in Episodic Reinforcement Learning

Ido Greenberg, Shie Mannor

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In many RL applications, once training ends, it is vital to detect any deterioration in the agent performance as soon as possible. Furthermore, it often has to be done without modifying the policy and under minimal assumptions regarding the environment. In this paper, we address this problem by focusing directly on the rewards and testing for degradation. We consider an episodic framework, where the rewards within each episode are not independent, nor identically-distributed, nor Markov. We present this problem as a multivariate mean-shift detection problem with possibly partial observations. We define the mean-shift in a way corresponding to deterioration of a temporal signal (such as the rewards), and derive a test for this problem with optimal statistical power. Empirically, on deteriorated rewards in control problems (generated using various environment modifications), the test is demonstrated to be more powerful than standard tests - often by orders of magnitude. We also suggest a novel Bootstrap mechanism for False Alarm Rate control (BFAR), applicable to episodic (non-i.i.d) signal and allowing our test to run sequentially in an online manner. Our method does not rely on a learned model of the environment, is entirely external to the agent, and in fact can be applied to detect changes or drifts in any episodic signal.

Original languageEnglish
Title of host publicationProceedings of the 38th International Conference on Machine Learning, ICML 2021
PublisherML Research Press
Pages3842-3853
Number of pages12
ISBN (Electronic)9781713845065
StatePublished - 2021
Event38th International Conference on Machine Learning, ICML 2021 - Virtual, Online
Duration: 18 Jul 202124 Jul 2021

Publication series

NameProceedings of Machine Learning Research
Volume139

Conference

Conference38th International Conference on Machine Learning, ICML 2021
CityVirtual, Online
Period18/07/2124/07/21

All Science Journal Classification (ASJC) codes

  • Software
  • Artificial Intelligence
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Detecting Rewards Deterioration in Episodic Reinforcement Learning'. Together they form a unique fingerprint.

Cite this