TY - JOUR
T1 - Detecting bone lesions in X-ray under diverse acquisition conditions
AU - Zimbalist, Tal
AU - Rosen, Ronnie
AU - Peri-Hanania, Keren
AU - Caspi, Yaron
AU - Rinott, Bar
AU - Zeltser-Dekel, Carmel
AU - Bercovich, Eyal
AU - Eldar, Yonina C.
AU - Bagon, Shai
N1 - Publisher Copyright: © 2024 Society of Photo-Optical Instrumentation Engineers.
PY - 2024/3/19
Y1 - 2024/3/19
N2 - Purpose: The diagnosis of primary bone tumors is challenging as the initial complaints are often non-specific. The early detection of bone cancer is crucial for a favorable prognosis. Incidentally, lesions may be found on radiographs obtained for other reasons. However, these early indications are often missed. We propose an automatic algorithm to detect bone lesions in conventional radiographs to facilitate early diagnosis. Detecting lesions in such radiographs is challenging. First, the prevalence of bone cancer is very low; any method must show high precision to avoid a prohibitive number of false alarms. Second, radiographs taken in health maintenance organizations (HMOs) or emergency departments (EDs) suffer from inherent diversity due to different X-ray machines, technicians, and imaging protocols. This diversity poses a major challenge to any automatic analysis method. Approach: We propose training an off-the-shelf object detection algorithm to detect lesions in radiographs. The novelty of our approach stems from a dedicated preprocessing stage that directly addresses the diversity of the data. The preprocessing consists of self-supervised region-of-interest detection using vision transformer (ViT), and a foreground-based histogram equalization for contrast enhancement to relevant regions only. Results: We evaluate our method via a retrospective study that analyzes bone tumors on radiographs acquired from January 2003 to December 2018 under diverse acquisition protocols. Our method obtains 82.43% sensitivity at a 1.5% false-positive rate and surpasses existing preprocessing methods. For lesion detection, our method achieves 82.5% accuracy and an IoU of 0.69. Conclusions: The proposed preprocessing method enables effectively coping with the inherent diversity of radiographs acquired in HMOs and EDs.
AB - Purpose: The diagnosis of primary bone tumors is challenging as the initial complaints are often non-specific. The early detection of bone cancer is crucial for a favorable prognosis. Incidentally, lesions may be found on radiographs obtained for other reasons. However, these early indications are often missed. We propose an automatic algorithm to detect bone lesions in conventional radiographs to facilitate early diagnosis. Detecting lesions in such radiographs is challenging. First, the prevalence of bone cancer is very low; any method must show high precision to avoid a prohibitive number of false alarms. Second, radiographs taken in health maintenance organizations (HMOs) or emergency departments (EDs) suffer from inherent diversity due to different X-ray machines, technicians, and imaging protocols. This diversity poses a major challenge to any automatic analysis method. Approach: We propose training an off-the-shelf object detection algorithm to detect lesions in radiographs. The novelty of our approach stems from a dedicated preprocessing stage that directly addresses the diversity of the data. The preprocessing consists of self-supervised region-of-interest detection using vision transformer (ViT), and a foreground-based histogram equalization for contrast enhancement to relevant regions only. Results: We evaluate our method via a retrospective study that analyzes bone tumors on radiographs acquired from January 2003 to December 2018 under diverse acquisition protocols. Our method obtains 82.43% sensitivity at a 1.5% false-positive rate and surpasses existing preprocessing methods. For lesion detection, our method achieves 82.5% accuracy and an IoU of 0.69. Conclusions: The proposed preprocessing method enables effectively coping with the inherent diversity of radiographs acquired in HMOs and EDs.
KW - bone lesions
KW - deep learning
KW - histogram equalization
KW - object detection
KW - vision transformer
UR - http://www.scopus.com/inward/record.url?scp=85192744834&partnerID=8YFLogxK
U2 - https://doi.org/10.1117/1.JMI.11.2.024502
DO - https://doi.org/10.1117/1.JMI.11.2.024502
M3 - مقالة
C2 - 38510544
SN - 2329-4302
VL - 11
JO - Journal of Medical Imaging
JF - Journal of Medical Imaging
IS - 2
M1 - 024502
ER -