DeSparsify: Adversarial Attack Against Token Sparsification Mechanisms

Oryan Yehezkel, Alon Zolfi, Amit Baras, Yuval Elovici, Asaf Shabtai

Research output: Contribution to journalConference articlepeer-review

Abstract

Vision transformers have contributed greatly to advancements in the computer vision domain, demonstrating state-of-the-art performance in diverse tasks (e.g., image classification, object detection). However, their high computational requirements grow quadratically with the number of tokens used. Token sparsification mechanisms have been proposed to address this issue. These mechanisms employ an input-dependent strategy, in which uninformative tokens are discarded from the computation pipeline, improving the model's efficiency. However, their dynamism and average-case assumption makes them vulnerable to a new threat vector - carefully crafted adversarial examples capable of fooling the sparsification mechanism, resulting in worst-case performance. In this paper, we present DeSparsify, an attack targeting the availability of vision transformers that use token sparsification mechanisms. The attack aims to exhaust the operating system's resources, while maintaining its stealthiness. Our evaluation demonstrates the attack's effectiveness on three token sparsification mechanisms and examines the attack's transferability between them and its effect on the GPU resources. To mitigate the impact of the attack, we propose various countermeasures. The source code is available online.

Original languageAmerican English
JournalAdvances in Neural Information Processing Systems
Volume37
StatePublished - 1 Jan 2024
Event38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada
Duration: 9 Dec 202415 Dec 2024

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Cite this