Demystifying Graph Sparsification Algorithms in Graph Properties Preservation

Yuhan Chen, Haojie Ye, Sanketh Vedula, Alex Bronstein, Ronald Dreslinski, Trevor Mudge, Nishil Talati

Research output: Contribution to journalConference articlepeer-review

Abstract

Graph sparsification is a technique that approximates a given graph by a sparse graph with a subset of vertices and/or edges. The goal of an effective sparsification algorithm is to maintain specific graph properties relevant to the downstream task while minimizing the graph’s size. Graph algorithms often suffer from long execution time due to the irregularity and the large real-world graph size. Graph sparsification can be applied to greatly reduce the run time of graph algorithms by substituting the full graph with a much smaller sparsified graph, without significantly degrading the output quality. However, the interaction between numerous sparsifiers and graph properties is not widely explored, and the potential of graph sparsification is not fully understood. In this work, we cover 16 widely-used graph metrics, 12 representative graph sparsification algorithms, and 14 real-world input graphs spanning various categories, exhibiting diverse characteristics, sizes, and densities. We developed a framework to extensively assess the performance of these sparsification algorithms against graph metrics, and provide insights to the results. Our study shows that there is no one sparsifier that performs the best in preserving all graph properties, e.g. sparsifiers that preserve distance-related graph properties (eccentricity) struggle to perform well on Graph Neural Networks (GNN). This paper presents a comprehensive experimental study evaluating the performance of sparsification algorithms in preserving essential graph metrics. The insights inform future research in incorporating matching graph sparsification to graph algorithms to maximize benefits while minimizing quality degradation. Furthermore, we provide a framework to facilitate the future evaluation of evolving sparsification algorithms, graph metrics, and ever-growing graph data.

Original languageEnglish
Pages (from-to)427-440
Number of pages14
JournalProceedings of the VLDB Endowment
Volume17
Issue number3
DOIs
StatePublished - 2023
Externally publishedYes
Event50th International Conference on Very Large Data Bases, VLDB 2024 - Guangzhou, China
Duration: 24 Aug 202429 Aug 2024

All Science Journal Classification (ASJC) codes

  • Computer Science (miscellaneous)
  • General Computer Science

Fingerprint

Dive into the research topics of 'Demystifying Graph Sparsification Algorithms in Graph Properties Preservation'. Together they form a unique fingerprint.

Cite this