Abstract
In this paper, we propose a residual echo suppression method using a UNet neural network that directly maps the outputs of a linear acoustic echo canceler to the desired signal in the spectral domain. This system embeds a design parameter that allows a tunable tradeoff between the desired-signal distortion and residual echo suppression in double-talk scenarios. The system employs 136 thousand parameters, and requires 1.6 Giga floating-point operations per second and 10 Mega-bytes of memory. The implementation satisfies both the timing requirements of the AEC challenge and the computational and memory limitations of on-device applications. Experiments are conducted with 161 h of data from the AEC challenge database and from real independent recordings. We demonstrate the performance of the proposed system in real-life conditions and compare it with two competing methods regarding echo suppression and desired-signal distortion, generalization to various environments, and robustness to high echo levels.
Original language | English |
---|---|
Pages (from-to) | 126-130 |
Number of pages | 5 |
Journal | Proceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing |
Volume | 2021-June |
DOIs | |
State | Published - 2021 |
Event | 2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Toronto, Canada Duration: 6 Jun 2021 → 11 Jun 2021 |
Keywords
- Acoustic echo cancellation
- On-device implementation
- Residual echo suppression
- Unet
All Science Journal Classification (ASJC) codes
- Software
- Signal Processing
- Electrical and Electronic Engineering