Abstract
This paper proposes to use a deep neural network (DNN)- based symbol detector for mmWave systems such that channel state information (CSI) acquisition can be bypassed. In particular, we consider a sliding bidirectional recurrent neural network (BRNN) architecture that is suitable for the long memory length of typical mmWave channels. The performance of the DNN detector is evaluated in comparison to that of the Viterbi detector. The results show that the performance of the DNN detector is close to that of the optimal Viterbi detector with perfect CSI, and that it outperforms the Viterbi algorithm with CSI estimation error. Further experiments show that the DNN detector is robust to a wide range of noise levels and varying channel conditions, and that a pretrained detector can be reliably applied to different mmWave channel realizations with minimal overhead.
Original language | American English |
---|---|
Article number | 9013468 |
Journal | Proceedings - IEEE Global Communications Conference, GLOBECOM |
DOIs | |
State | Published - 1 Jan 2019 |
Externally published | Yes |
Event | 2019 IEEE Global Communications Conference, GLOBECOM 2019 - Waikoloa, United States Duration: 9 Dec 2019 → 13 Dec 2019 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Computer Networks and Communications
- Hardware and Architecture
- Signal Processing