Deep Learning Assisted Multiuser MIMO Load Modulated Systems for Enhanced Downlink mmWave Communications

Ercong Yu, Jinle Zhu, Qiang Li, Zilong Liu, Hongyang Chen, Shlomo Shamai, H. Vincent Poor

Research output: Contribution to journalArticlepeer-review

Abstract

This paper is focused on multiuser load modulation arrays (MU-LMAs) which are attractive due to their low system complexity and reduced cost for millimeter wave (mmWave) multi-input multi-output (MIMO) systems. The existing precoding algorithm for downlink MU-LMA relies on a sub-array structured (SAS) transmitter which may suffer from decreased degrees of freedom and complex system configuration. Furthermore, a conventional LMA codebook with codewords uniformly distributed on a hypersphere may not be channel-adaptive and may lead to increased signal detection complexity. In this paper, we conceive an MU-LMA system employing a full-array structured (FAS) transmitter and propose two algorithms accordingly. The proposed FAS-based system addresses the SAS structural problems and can support larger numbers of users. For LMA-imposed constant-power downlink precoding, we propose an FAS-based normalized block diagonalization (FAS-NBD) algorithm. However, the forced normalization may result in performance degradation. This degradation, together with the aforementioned codebook design problems, is difficult to solve analytically. This motivates us to propose a Deep Learning-enhanced (FAS-DL-NBD) algorithm for adaptive codebook design and codebook-independent decoding. It is shown that the proposed algorithms are robust to imperfect knowledge of channel state information and yield excellent error performance. Moreover, the FAS-DL-NBD algorithm enables signal detection with low complexity as the number of bits per codeword increases.

Original languageEnglish
Pages (from-to)6750-6764
Number of pages15
JournalIEEE Transactions on Wireless Communications
Volume23
Issue number7
DOIs
StatePublished - 2024

Keywords

  • Complexity theory
  • Deep Learning
  • Downlink
  • Load modulation arrays
  • MIMO communication
  • Millimeter wave communication
  • Radio transmitters
  • Synthetic aperture sonar
  • Transmitting antennas
  • block-diagonalization
  • codebook design
  • multiuser MIMO systems
  • precoding

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Electrical and Electronic Engineering
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Deep Learning Assisted Multiuser MIMO Load Modulated Systems for Enhanced Downlink mmWave Communications'. Together they form a unique fingerprint.

Cite this