TY - JOUR
T1 - Deciphering the underlying mechanisms of the pharyngeal pumping motions in Caenorhabditis elegans
AU - Sherman, Dana
AU - Harel, David
N1 - We thank Nadav Sherman for designing the initial version of the code of both the model and the animation. Author contributions: D.S. performed research; D.S. analyzed data; D.H. managed and supervised all stages of the project; and D.S. and D.H. wrote the paper.
PY - 2024/2/13
Y1 - 2024/2/13
N2 - The pharynx of the nematode Caenorhabditis elegans is a neuromuscular organ that exhibits typical pumping motions, which result in the intake of food particles from the environment. In-depth inspection reveals slightly different dynamics at the various pharyngeal areas, rather than synchronous pumping motions of the whole organ, which are important for its effective functioning. While the different pumping dynamics are well characterized, the underlying mechanisms that generate them are not known. In this study, the C. elegans pharynx was modeled in a bottom-up fashion, including all of the underlying biological processes that lead to, and including, its end function, food intake. The mathematical modeling of all processes allowed performing comprehensive, quantitative analyses of the system as a whole. Our analyses provided detailed explanations for the various pumping dynamics generated at the different pharyngeal areas; a fine-resolution description of muscle dynamics, both between and within different pharyngeal areas; a quantitative assessment of the values of many parameters of the system that are unavailable in the literature; and support for a functional role of the marginal cells, which are currently assumed to mainly have a structural role in the pharynx. In addition, our model predicted that in tiny organisms such as C. elegans, the generation of long-lasting action potentials must involve ions other than calcium. Our study exemplifies the power of mathematical models, which allow a more accurate, higher-resolution inspection of the studied system, and an easier and faster execution of in silico experiments than feasible in the lab.
AB - The pharynx of the nematode Caenorhabditis elegans is a neuromuscular organ that exhibits typical pumping motions, which result in the intake of food particles from the environment. In-depth inspection reveals slightly different dynamics at the various pharyngeal areas, rather than synchronous pumping motions of the whole organ, which are important for its effective functioning. While the different pumping dynamics are well characterized, the underlying mechanisms that generate them are not known. In this study, the C. elegans pharynx was modeled in a bottom-up fashion, including all of the underlying biological processes that lead to, and including, its end function, food intake. The mathematical modeling of all processes allowed performing comprehensive, quantitative analyses of the system as a whole. Our analyses provided detailed explanations for the various pumping dynamics generated at the different pharyngeal areas; a fine-resolution description of muscle dynamics, both between and within different pharyngeal areas; a quantitative assessment of the values of many parameters of the system that are unavailable in the literature; and support for a functional role of the marginal cells, which are currently assumed to mainly have a structural role in the pharynx. In addition, our model predicted that in tiny organisms such as C. elegans, the generation of long-lasting action potentials must involve ions other than calcium. Our study exemplifies the power of mathematical models, which allow a more accurate, higher-resolution inspection of the studied system, and an easier and faster execution of in silico experiments than feasible in the lab.
UR - http://www.scopus.com/inward/record.url?scp=85184438696&partnerID=8YFLogxK
U2 - 10.1073/pnas.2302660121
DO - 10.1073/pnas.2302660121
M3 - مقالة
C2 - 38315866
SN - 0027-8424
VL - 121
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 7
M1 - e2302660121
ER -