Decentralized event-Triggered control of large-scale systems with saturated actuators

Yiftah Kowal, Anton Selivanov, Emilia Fridman

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We consider a large-scale LTI system with multiple local communication networks connecting sensors, controllers, and actuators. The local networks operate asynchronously and independently of one another. The main novelty is that the decentralized controllers are subject to saturation. Our objective is to achieve a regional exponential stability providing a decentralized bound on the domain of attraction for each plant. We introduce a sampled-data event-Triggering mechanism from sensors to controllers to reduce the amount of transmitted signals. Using the time-delay approach to networked control systems and appropriate Lyapunov-Krasovskii functionals, we derive linear matrix inequalities that allow to find the decentralized bounds on the domains of attraction for each plant. Numerical example of coupled cart-pendulums illustrates the efficiency of the method.

Original languageEnglish
Title of host publication2018 IEEE International Conference on the Science of Electrical Engineering in Israel, ICSEE 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538663783
DOIs
StatePublished - 2 Jul 2018
Event2018 IEEE International Conference on the Science of Electrical Engineering in Israel, ICSEE 2018 - Eilat, Israel
Duration: 12 Dec 201814 Dec 2018

Publication series

Name2018 IEEE International Conference on the Science of Electrical Engineering in Israel, ICSEE 2018

Conference

Conference2018 IEEE International Conference on the Science of Electrical Engineering in Israel, ICSEE 2018
Country/TerritoryIsrael
CityEilat
Period12/12/1814/12/18

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Decentralized event-Triggered control of large-scale systems with saturated actuators'. Together they form a unique fingerprint.

Cite this