@inproceedings{1ddeed562308434baf695a7bb8a3bd58,
title = "Debris avoidance maneuvers for spacecraft in a cluster",
abstract = "Spacecraft formation flying and satellite cluster flight have seen growing interest in the last decade. However, the problem of finding the optimal debris collision avoidance maneuver for a satellite in a cluster has received little attention. This paper develops a method for choosing the timing for conducting minimum-fuel avoidance maneuvers without violating the cluster inter-satellite maximal distance limits. The mean semimajor axis difference between the maneuvering satellite and the other satellites is monitored for the assessment of a maneuver possibility. In addition, three techniques for finding optimal maneuvers under the constraints of cluster-keeping are developed. The first is an execution of an additional cluster- keeping maneuver at the debris time of closest approach, the second is a global all-cluster maneuver, and the third is a fuel-optimal maneuver, which incorporates the cluster-keeping constraints into the calculation of the evasive maneuver. The methods are demonstrated and compared. The first methodology proves to be the most fuel efficient. The global maneuver guarantees boundedness of the inter-satellite distances, as well as fuel and mass balance. However, it is rather fuel-expensive. The last method proves to be useful at certain timings, and is a compromise between fuel consumption, and the number of maneuvers.",
author = "Elad Denenberg and Pini Gurfil",
year = "2017",
language = "الإنجليزيّة",
isbn = "9780877036371",
series = "Advances in the Astronautical Sciences",
pages = "1171--1189",
editor = "Sims, {Jon A.} and Leve, {Frederick A.} and McMahon, {Jay W.} and Yanping Guo",
booktitle = "Spaceflight Mechanics 2017",
note = "27th AAS/AIAA Space Flight Mechanics Meeting, 2017 ; Conference date: 05-02-2017 Through 09-02-2017",
}