TY - CHAP
T1 - Data-Driven Performance Analysis of Scheduled Processes
AU - Senderovich, Arik
AU - Rogge-Solti, Andreas
AU - Gal, Avigdor
AU - Mendling, Jan
AU - Mandelbaum, Avishai
AU - Kadish, Sarah
AU - Bunnell, Craig A.
N1 - Publisher Copyright: © Springer International Publishing Switzerland 2015.
PY - 2015
Y1 - 2015
N2 - The performance of scheduled business processes is of central importance for services and manufacturing systems. However, current techniques for performance analysis do not take both queueing semantics and the process perspective into account. In this work, we address this gap by developing a novel method for utilizing rich process logs to analyze performance of scheduled processes. The proposed method combines simulation, queueing analytics, and statistical methods. At the heart of our approach is the discovery of an individual-case model from data, based on an extension of the Colored Petri Nets formalism. The resulting model can be simulated to answer performance queries, yet it is computational inefficient. To reduce the computational cost, the discovered model is projected into Queueing Networks, a formalism that enables efficient performance analytics. The projection is facilitated by a sequence of folding operations that alter the structure and dynamics of the Petri Net model. We evaluate the approach with a real-world dataset from Dana-Farber Cancer Institute, a large outpatient cancer hospital in the United States.
AB - The performance of scheduled business processes is of central importance for services and manufacturing systems. However, current techniques for performance analysis do not take both queueing semantics and the process perspective into account. In this work, we address this gap by developing a novel method for utilizing rich process logs to analyze performance of scheduled processes. The proposed method combines simulation, queueing analytics, and statistical methods. At the heart of our approach is the discovery of an individual-case model from data, based on an extension of the Colored Petri Nets formalism. The resulting model can be simulated to answer performance queries, yet it is computational inefficient. To reduce the computational cost, the discovered model is projected into Queueing Networks, a formalism that enables efficient performance analytics. The projection is facilitated by a sequence of folding operations that alter the structure and dynamics of the Petri Net model. We evaluate the approach with a real-world dataset from Dana-Farber Cancer Institute, a large outpatient cancer hospital in the United States.
UR - http://www.scopus.com/inward/record.url?scp=84944678949&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-23063-4_3
DO - 10.1007/978-3-319-23063-4_3
M3 - فصل
SN - 978-3-319-23062-7
SN - 9783319230627
VL - 9253
T3 - Lecture Notes in Computer Science
SP - 35
EP - 52
BT - BUSINESS PROCESS MANAGEMENT, BPM 2015
A2 - Recker, Jan
A2 - Weidlich, Matthias
A2 - Motahari-Nezhad, Hamid Reza
T2 - 13th International Conference on Business Process Management, BPM 2015
Y2 - 31 August 2015 through 3 September 2015
ER -