TY - JOUR
T1 - Dark states of quantum search cause imperfect detection
AU - Thiel, Felix
AU - Mualem, Itay
AU - Meidan, Dror
AU - Barkai, Eli
AU - Kessler, David A.
N1 - Publisher Copyright: © 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
PY - 2020/10/20
Y1 - 2020/10/20
N2 - We consider a quantum walk where a detector repeatedly probes the system with fixed rate 1/τ until the walker is detected. This is a quantum version of the first-passage problem. We focus on the total probability Pdet that the particle is eventually detected in some target state, for example, on a node rd on a graph, after an arbitrary number of detection attempts. Analyzing the dark and bright states for finite graphs and more generally for systems with a discrete spectrum, we provide an explicit formula for Pdet in terms of the energy eigenstates which is generically τ independent. We find that disorder in the underlying Hamiltonian renders perfect detection, Pdet=1, and then expose the role of symmetry with respect to suboptimal detection. Specifically, we give a simple upper bound for Pdet that is controlled by the number of equivalent (with respect to the detection) states in the system. We also extend our results to infinite systems, for example, the detection probability of a quantum walk on a line, which is τ dependent and less than half, well below Polya's optimal detection for a classical random walk.
AB - We consider a quantum walk where a detector repeatedly probes the system with fixed rate 1/τ until the walker is detected. This is a quantum version of the first-passage problem. We focus on the total probability Pdet that the particle is eventually detected in some target state, for example, on a node rd on a graph, after an arbitrary number of detection attempts. Analyzing the dark and bright states for finite graphs and more generally for systems with a discrete spectrum, we provide an explicit formula for Pdet in terms of the energy eigenstates which is generically τ independent. We find that disorder in the underlying Hamiltonian renders perfect detection, Pdet=1, and then expose the role of symmetry with respect to suboptimal detection. Specifically, we give a simple upper bound for Pdet that is controlled by the number of equivalent (with respect to the detection) states in the system. We also extend our results to infinite systems, for example, the detection probability of a quantum walk on a line, which is τ dependent and less than half, well below Polya's optimal detection for a classical random walk.
UR - http://www.scopus.com/inward/record.url?scp=85106084827&partnerID=8YFLogxK
U2 - 10.1103/PhysRevResearch.2.043107
DO - 10.1103/PhysRevResearch.2.043107
M3 - مقالة
SN - 2643-1564
VL - 2
JO - PHYSICAL REVIEW RESEARCH
JF - PHYSICAL REVIEW RESEARCH
IS - 4
M1 - 043107
ER -