Cycle structure of the interchange process and representation theory

N Berestycki, Gady Kozma

Research output: Contribution to journalArticlepeer-review

Abstract

Consider the process of random transpositions on the complete graph Kn. We use representation theory to give an exact, simple formula for the expected number of cycles of size k at time t, in terms of an incomplete Beta function. Using this we show that the expected number of cycles of size k jumps from 0 to its equilibrium value, 1=k, at the time where the giant component of the associated random graph first exceeds k. Consequently we deduce a new and simple proof of Schramm's theorem on random transpositions, that giant cycles emerge at the same time as the giant component in the random graph. We also calculate the "window" for this transition and find that it is quite thin. Finally, we give a new proof of a result by the first author and Durrett that the random transposition process exhibits a certain slowdown transition. The proof makes use of a recent formula for the character decomposition of the number of cycles of a given size in a permutation, and the Frobenius formula for the character ratios.

Original languageEnglish
Pages (from-to)265-280
Number of pages16
JournalBulletin de la Societe Mathematique de France
Volume143
Issue number2
DOIs
StatePublished - 2015

All Science Journal Classification (ASJC) codes

  • General Mathematics

Fingerprint

Dive into the research topics of 'Cycle structure of the interchange process and representation theory'. Together they form a unique fingerprint.

Cite this