CSHER: A System for Compact Storage with HE-Retrieval

Adi Akavia, Neta Oren, Boaz Sapir, Margarita Vald

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Homomorphic encryption (HE) is a promising technology for protecting data in use, with considerable progress in recent years towards attaining practical runtime performance. However, the high storage overhead associated with HE remains an obstacle to its large-scale adoption. In this work we propose a new storage solution in the two-server model resolving the high storage overhead associated with HE, while preserving rigorous data confidentiality. We empirically evaluated our solution in a proof-of-concept system running on AWS EC2 instances with AWS S3 storage, demonstrating storage size with zero overhead over storing AES ciphertexts, and 10μs amortized end-to-end runtime. In addition, we performed experiments on multiple clouds, i.e., where each server resides on a different cloud, exhibiting similar results. As a central tool we introduce the first perfect secret sharing scheme with fast homomorphic reconstruction over the reals; this may be of independent interest.

Original languageEnglish
Title of host publication32nd USENIX Security Symposium, USENIX Security 2023
Pages4751-4768
Number of pages18
ISBN (Electronic)9781713879497
StatePublished - 2023
Event32nd USENIX Security Symposium, USENIX Security 2023 - Anaheim, United States
Duration: 9 Aug 202311 Aug 2023

Publication series

Name32nd USENIX Security Symposium, USENIX Security 2023
Volume7

Conference

Conference32nd USENIX Security Symposium, USENIX Security 2023
Country/TerritoryUnited States
CityAnaheim
Period9/08/2311/08/23

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'CSHER: A System for Compact Storage with HE-Retrieval'. Together they form a unique fingerprint.

Cite this