Abstract
The multiband nature of iron pnictides gives rise to a rich temperature-doping phase diagram of competing orders and a plethora of collective phenomena. At low dopings, the tetragonal-to-orthorhombic structural transition is closely followed by a spin-density-wave transition both being in close proximity to the superconducting phase. A key question is the nature of high-Tc superconductivity and its relation to orbital ordering and magnetism. Here we study the NaFe1-xCoxAs superconductor using polarization-resolved Raman spectroscopy. The Raman susceptibility displays critical enhancement of nonsymmetric charge fluctuations across the entire phase diagram, which are precursors to a d-wave Pomeranchuk instability at temperature θ(x). The charge fluctuations are interpreted in terms of quadrupole interorbital excitations in which the electron and hole Fermi surfaces breathe in-phase. Below Tc, the critical fluctuations acquire coherence and undergo a metamorphosis into a coherent in-gap mode of extraordinary strength.
Original language | English |
---|---|
Article number | 054515 |
Journal | Physical Review B |
Volume | 93 |
Issue number | 5 |
DOIs | |
State | Published - 16 Feb 2016 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics