TY - JOUR
T1 - CRISPR/Cas9-based Knockout Strategy Elucidates Components Essential for Type 1 Interferon Signaling in Human HeLa Cells
AU - Urin, Victoria
AU - Shemesh, Maya
AU - Schreiber, Gideon
N1 - We want to thank Dr. Daniel Harari for performing the MARSseq and the INCPM for performing the RNAseq experiments detailed in this manuscript. This research was funded by the United States–Israel Binational Science Foundation Grant 2011093 and the I-CORE Program of the Planning and Budgeting Committee of the Israel Science Foundation Grant 1775/12.
PY - 2019/8/9
Y1 - 2019/8/9
N2 - Type I interferons (IFNs) have a central role in innate and adaptive immunities, proliferation, and cancer surveillance. How IFN binding to its specific receptor, the IFN α and β receptor (IFNAR), can drive such variety of processes is an open question. Here, to systematically and thoroughly investigate the molecular mechanism of IFN signaling, we used a CRISPR/Cas9-based approach in a human cell line (HeLa) to generate knockouts (KOs) of the genes participating in the type 1 IFN signaling cascade. We show that both IFNAR chains (IFNAR1 and IFNAR2) are absolutely required for any IFN-induced signaling. Deletion of either signal transducer and activator of transcription 1 (STAT1) or STAT2 had only a partial effect on IFN-induced antiviral activity or gene induction. However, the deletion of both genes completely abrogated any IFN-induced activity. So did a double STAT2–IFN regulatory factor 1 (IRF1) KO and, to a large extent, a STAT1 KO together with IRF9 knockdown. KO of any of the STATs had no effect on the phosphorylation of other STATs, indicating that they bound IFNAR independently. STAT3 and STAT6 phosphorylations were fully induced by type 1 IFN in the STAT1–STAT2 KO, but did not promote gene induction. Moreover, STAT3 KO did not affect type 1 IFN-induced gene or protein expression. Type 1 IFN also did not activate p38, AKT, or ERK kinase. We conclude that type 1 IFN-induced activities in HeLa cells are mediated by STAT1/STAT2/IRF9, STAT1/STAT1, or STAT2/IRF9 complexes and do not require alternative pathways.
AB - Type I interferons (IFNs) have a central role in innate and adaptive immunities, proliferation, and cancer surveillance. How IFN binding to its specific receptor, the IFN α and β receptor (IFNAR), can drive such variety of processes is an open question. Here, to systematically and thoroughly investigate the molecular mechanism of IFN signaling, we used a CRISPR/Cas9-based approach in a human cell line (HeLa) to generate knockouts (KOs) of the genes participating in the type 1 IFN signaling cascade. We show that both IFNAR chains (IFNAR1 and IFNAR2) are absolutely required for any IFN-induced signaling. Deletion of either signal transducer and activator of transcription 1 (STAT1) or STAT2 had only a partial effect on IFN-induced antiviral activity or gene induction. However, the deletion of both genes completely abrogated any IFN-induced activity. So did a double STAT2–IFN regulatory factor 1 (IRF1) KO and, to a large extent, a STAT1 KO together with IRF9 knockdown. KO of any of the STATs had no effect on the phosphorylation of other STATs, indicating that they bound IFNAR independently. STAT3 and STAT6 phosphorylations were fully induced by type 1 IFN in the STAT1–STAT2 KO, but did not promote gene induction. Moreover, STAT3 KO did not affect type 1 IFN-induced gene or protein expression. Type 1 IFN also did not activate p38, AKT, or ERK kinase. We conclude that type 1 IFN-induced activities in HeLa cells are mediated by STAT1/STAT2/IRF9, STAT1/STAT1, or STAT2/IRF9 complexes and do not require alternative pathways.
U2 - https://doi.org/10.1016/j.jmb.2019.06.007
DO - https://doi.org/10.1016/j.jmb.2019.06.007
M3 - مقالة
SN - 0022-2836
VL - 431
SP - 3324
EP - 3338
JO - Journal of Molecular Biology
JF - Journal of Molecular Biology
IS - 17
ER -