Abstract
This paper presents a novel deep learning architecture for classifying structured objects in ultrafine-grained datasets, where classes may not be clearly distinguishable by their appearance but rather by their context. We model sequences of images as linear-chain CRFs, and jointly learn the parameters from both local-visual features and neighboring class information. The visual features are learned by convolutional layers, whereas class-structure information is reparametrized by factorizing the CRF pairwise potential matrix. This forms a context-based semantic similarity space, learned alongside the visual similarities, and dramatically increases the learning capacity of contextual information. This new parametrization, however, forms a highly nonlinear objective function which is challenging to optimize. To overcome this, we develop a novel surrogate likelihood which allows for a local likelihood approximation of the original CRF with integrated batch-normalization. This model overcomes the difficulties of existing CRF methods to learn the contextual relationships thoroughly when there is a large number of classes and the data is sparse. The performance of the proposed method is illustrated on a huge dataset that contains images of retail-store product displays, and shows significantly improved results compared to linear CRF parametrization, unnormalized likelihood optimization, and RNN modeling. We also show improved results on a standard OCR dataset.
Original language | English |
---|---|
Article number | 102865 |
Journal | Computer Vision and Image Understanding |
Volume | 191 |
DOIs | |
State | Published - Feb 2020 |
Keywords
- Batch normalization
- CRF
- Class embedding
- Matrix factorization
- Surrogate likelihood
All Science Journal Classification (ASJC) codes
- Software
- Signal Processing
- Computer Vision and Pattern Recognition