TY - JOUR
T1 - Creative foraging
T2 - An experimental paradigm for studying exploration and discovery
AU - Hart, Yuval
AU - Mayo, Avraham E.
AU - Mayo, Ruth
AU - Rozenkrantz, Liron
AU - Tendler, Avichai
AU - Alon, Uri
AU - Noy, Lior
N1 - Publisher Copyright: © 2017 Hart et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2017/8
Y1 - 2017/8
N2 - Creative exploration is central to science, art and cognitive development. However, research on creative exploration is limited by a lack of high-resolution automated paradigms. To address this, we present such an automated paradigm, the creative foraging game, in which people search for novel and valuable solutions in a large and well-defined space made of all possible shapes made of ten connected squares. Players discovered shape categories such as digits, letters, and airplanes as well as more abstract categories. They exploited each category, then dropped it to explore once again, and so on. Aligned with a prediction of optimal foraging theory (OFT), during exploration phases, people moved along meandering paths that are about three times longer than the shortest paths between shapes; when exploiting a category of related shapes, they moved along the shortest paths. The moment of discovery of a new category was usually done at a non-prototypical and ambiguous shape, which can serve as an experimental proxy for creative leaps. People showed individual differences in their search patterns, along a continuum between two strategies: a mercurial quick-to-discover/quick-to-drop strategy and a thorough slow-to-discover/slow-to-drop strategy. Contrary to optimal foraging theory, players leave exploitation to explore again far before categories are depleted. This paradigm opens the way for automated high-resolution study of creative exploration.
AB - Creative exploration is central to science, art and cognitive development. However, research on creative exploration is limited by a lack of high-resolution automated paradigms. To address this, we present such an automated paradigm, the creative foraging game, in which people search for novel and valuable solutions in a large and well-defined space made of all possible shapes made of ten connected squares. Players discovered shape categories such as digits, letters, and airplanes as well as more abstract categories. They exploited each category, then dropped it to explore once again, and so on. Aligned with a prediction of optimal foraging theory (OFT), during exploration phases, people moved along meandering paths that are about three times longer than the shortest paths between shapes; when exploiting a category of related shapes, they moved along the shortest paths. The moment of discovery of a new category was usually done at a non-prototypical and ambiguous shape, which can serve as an experimental proxy for creative leaps. People showed individual differences in their search patterns, along a continuum between two strategies: a mercurial quick-to-discover/quick-to-drop strategy and a thorough slow-to-discover/slow-to-drop strategy. Contrary to optimal foraging theory, players leave exploitation to explore again far before categories are depleted. This paradigm opens the way for automated high-resolution study of creative exploration.
UR - http://www.scopus.com/inward/record.url?scp=85026636701&partnerID=8YFLogxK
U2 - https://doi.org/10.1371/journal.pone.0182133
DO - https://doi.org/10.1371/journal.pone.0182133
M3 - مقالة
C2 - 28767668
SN - 1932-6203
VL - 12
JO - PLoS ONE
JF - PLoS ONE
IS - 8
M1 - e0182133
ER -