TY - GEN
T1 - Covering vectors by spaces in perturbed graphic matroids and their duals
AU - Fomin, Fedor V.
AU - Golovach, Petr A.
AU - Lokshtanov, Daniel
AU - Saurabh, Saket
AU - Zehavi, Meirav
N1 - Publisher Copyright: © Graham Cormode, Jacques Dark, and Christian Konrad; licensed under Creative Commons License CC-BY
PY - 2019/7/1
Y1 - 2019/7/1
N2 - Perturbed graphic matroids are binary matroids that can be obtained from a graphic matroid by adding a noise of small rank. More precisely, an r-rank perturbed graphic matroid M is a binary matroid that can be represented in the form I + P, where I is the incidence matrix of some graph and P is a binary matrix of rank at most r. Such matroids naturally appear in a number of theoretical and applied settings. The main motivation behind our work is an attempt to understand which parameterized algorithms for various problems on graphs could be lifted to perturbed graphic matroids. We study the parameterized complexity of a natural generalization (for matroids) of the following fundamental problems on graphs: Steiner Tree and Multiway Cut. In this generalization, called the Space Cover problem, we are given a binary matroid M with a ground set E, a set of terminals T ⊆ E, and a non-negative integer k. The task is to decide whether T can be spanned by a subset of E \ T of size at most k. We prove that on graphic matroid perturbations, for every fixed r, Space Cover is fixed-parameter tractable parameterized by k. On the other hand, the problem becomes W[1]-hard when parameterized by r + k + |T| and it is NP-complete for r ≤ 2 and |T| ≤ 2. On cographic matroids, that are the duals of graphic matroids, Space Cover generalizes another fundamental and well-studied problem, namely Multiway Cut. We show that on the duals of perturbed graphic matroids the Space Cover problem is fixed-parameter tractable parameterized by r + k.
AB - Perturbed graphic matroids are binary matroids that can be obtained from a graphic matroid by adding a noise of small rank. More precisely, an r-rank perturbed graphic matroid M is a binary matroid that can be represented in the form I + P, where I is the incidence matrix of some graph and P is a binary matrix of rank at most r. Such matroids naturally appear in a number of theoretical and applied settings. The main motivation behind our work is an attempt to understand which parameterized algorithms for various problems on graphs could be lifted to perturbed graphic matroids. We study the parameterized complexity of a natural generalization (for matroids) of the following fundamental problems on graphs: Steiner Tree and Multiway Cut. In this generalization, called the Space Cover problem, we are given a binary matroid M with a ground set E, a set of terminals T ⊆ E, and a non-negative integer k. The task is to decide whether T can be spanned by a subset of E \ T of size at most k. We prove that on graphic matroid perturbations, for every fixed r, Space Cover is fixed-parameter tractable parameterized by k. On the other hand, the problem becomes W[1]-hard when parameterized by r + k + |T| and it is NP-complete for r ≤ 2 and |T| ≤ 2. On cographic matroids, that are the duals of graphic matroids, Space Cover generalizes another fundamental and well-studied problem, namely Multiway Cut. We show that on the duals of perturbed graphic matroids the Space Cover problem is fixed-parameter tractable parameterized by r + k.
KW - Binary matroids
KW - Parameterized complexity
KW - Perturbed graphic matroids
KW - Spanning set
UR - http://www.scopus.com/inward/record.url?scp=85069187511&partnerID=8YFLogxK
U2 - https://doi.org/10.4230/LIPIcs.ICALP.2019.59
DO - https://doi.org/10.4230/LIPIcs.ICALP.2019.59
M3 - Conference contribution
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019
A2 - Baier, Christel
A2 - Chatzigiannakis, Ioannis
A2 - Flocchini, Paola
A2 - Leonardi, Stefano
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019
Y2 - 9 July 2019 through 12 July 2019
ER -