Covering vectors by spaces in perturbed graphic matroids and their duals

Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, Meirav Zehavi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Perturbed graphic matroids are binary matroids that can be obtained from a graphic matroid by adding a noise of small rank. More precisely, an r-rank perturbed graphic matroid M is a binary matroid that can be represented in the form I + P, where I is the incidence matrix of some graph and P is a binary matrix of rank at most r. Such matroids naturally appear in a number of theoretical and applied settings. The main motivation behind our work is an attempt to understand which parameterized algorithms for various problems on graphs could be lifted to perturbed graphic matroids. We study the parameterized complexity of a natural generalization (for matroids) of the following fundamental problems on graphs: Steiner Tree and Multiway Cut. In this generalization, called the Space Cover problem, we are given a binary matroid M with a ground set E, a set of terminals T ⊆ E, and a non-negative integer k. The task is to decide whether T can be spanned by a subset of E \ T of size at most k. We prove that on graphic matroid perturbations, for every fixed r, Space Cover is fixed-parameter tractable parameterized by k. On the other hand, the problem becomes W[1]-hard when parameterized by r + k + |T| and it is NP-complete for r ≤ 2 and |T| ≤ 2. On cographic matroids, that are the duals of graphic matroids, Space Cover generalizes another fundamental and well-studied problem, namely Multiway Cut. We show that on the duals of perturbed graphic matroids the Space Cover problem is fixed-parameter tractable parameterized by r + k.

Original languageAmerican English
Title of host publication46th International Colloquium on Automata, Languages, and Programming, ICALP 2019
EditorsChristel Baier, Ioannis Chatzigiannakis, Paola Flocchini, Stefano Leonardi
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959771092
DOIs
StatePublished - 1 Jul 2019
Event46th International Colloquium on Automata, Languages, and Programming, ICALP 2019 - Patras, Greece
Duration: 9 Jul 201912 Jul 2019

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume132

Conference

Conference46th International Colloquium on Automata, Languages, and Programming, ICALP 2019
Country/TerritoryGreece
CityPatras
Period9/07/1912/07/19

Keywords

  • Binary matroids
  • Parameterized complexity
  • Perturbed graphic matroids
  • Spanning set

All Science Journal Classification (ASJC) codes

  • Software

Cite this