TY - GEN

T1 - Covering vectors by spaces in perturbed graphic matroids and their duals

AU - Fomin, Fedor V.

AU - Golovach, Petr A.

AU - Lokshtanov, Daniel

AU - Saurabh, Saket

AU - Zehavi, Meirav

N1 - Publisher Copyright: © Graham Cormode, Jacques Dark, and Christian Konrad; licensed under Creative Commons License CC-BY

PY - 2019/7/1

Y1 - 2019/7/1

N2 - Perturbed graphic matroids are binary matroids that can be obtained from a graphic matroid by adding a noise of small rank. More precisely, an r-rank perturbed graphic matroid M is a binary matroid that can be represented in the form I + P, where I is the incidence matrix of some graph and P is a binary matrix of rank at most r. Such matroids naturally appear in a number of theoretical and applied settings. The main motivation behind our work is an attempt to understand which parameterized algorithms for various problems on graphs could be lifted to perturbed graphic matroids. We study the parameterized complexity of a natural generalization (for matroids) of the following fundamental problems on graphs: Steiner Tree and Multiway Cut. In this generalization, called the Space Cover problem, we are given a binary matroid M with a ground set E, a set of terminals T ⊆ E, and a non-negative integer k. The task is to decide whether T can be spanned by a subset of E \ T of size at most k. We prove that on graphic matroid perturbations, for every fixed r, Space Cover is fixed-parameter tractable parameterized by k. On the other hand, the problem becomes W[1]-hard when parameterized by r + k + |T| and it is NP-complete for r ≤ 2 and |T| ≤ 2. On cographic matroids, that are the duals of graphic matroids, Space Cover generalizes another fundamental and well-studied problem, namely Multiway Cut. We show that on the duals of perturbed graphic matroids the Space Cover problem is fixed-parameter tractable parameterized by r + k.

AB - Perturbed graphic matroids are binary matroids that can be obtained from a graphic matroid by adding a noise of small rank. More precisely, an r-rank perturbed graphic matroid M is a binary matroid that can be represented in the form I + P, where I is the incidence matrix of some graph and P is a binary matrix of rank at most r. Such matroids naturally appear in a number of theoretical and applied settings. The main motivation behind our work is an attempt to understand which parameterized algorithms for various problems on graphs could be lifted to perturbed graphic matroids. We study the parameterized complexity of a natural generalization (for matroids) of the following fundamental problems on graphs: Steiner Tree and Multiway Cut. In this generalization, called the Space Cover problem, we are given a binary matroid M with a ground set E, a set of terminals T ⊆ E, and a non-negative integer k. The task is to decide whether T can be spanned by a subset of E \ T of size at most k. We prove that on graphic matroid perturbations, for every fixed r, Space Cover is fixed-parameter tractable parameterized by k. On the other hand, the problem becomes W[1]-hard when parameterized by r + k + |T| and it is NP-complete for r ≤ 2 and |T| ≤ 2. On cographic matroids, that are the duals of graphic matroids, Space Cover generalizes another fundamental and well-studied problem, namely Multiway Cut. We show that on the duals of perturbed graphic matroids the Space Cover problem is fixed-parameter tractable parameterized by r + k.

KW - Binary matroids

KW - Parameterized complexity

KW - Perturbed graphic matroids

KW - Spanning set

UR - http://www.scopus.com/inward/record.url?scp=85069187511&partnerID=8YFLogxK

U2 - https://doi.org/10.4230/LIPIcs.ICALP.2019.59

DO - https://doi.org/10.4230/LIPIcs.ICALP.2019.59

M3 - Conference contribution

T3 - Leibniz International Proceedings in Informatics, LIPIcs

BT - 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019

A2 - Baier, Christel

A2 - Chatzigiannakis, Ioannis

A2 - Flocchini, Paola

A2 - Leonardi, Stefano

PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

T2 - 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019

Y2 - 9 July 2019 through 12 July 2019

ER -