Covariance-Based Selection of Parameters for Particle Filter Data Assimilation in Soil Hydrology

Alaa Jamal, Raphael Linker

Research output: Contribution to journalArticlepeer-review

Abstract

Real-time in situ measurements are increasingly being used to improve the estimations of simulation models via data assimilation techniques such as particle filter. However, models that describe complex processes such as water flow contain a large number of parameters while the data available are typically very limited. In such situations, applying particle filter to a large, fixed set of parameters chosen a priori can lead to unstable behavior, i.e., inconsistent adjustment of some of the parameters that have only limited impact on the states that are being measured. To prevent this, in this study correlation-based variable selection is embedded in the particle filter, so that at each step only a subset of the most influential parameters is adjusted. The particle filter used in this study includes genetic algorithm operators and Monte Carlo Markov Chain for alleviating filter degeneracy and sample impoverishment. The proposed method was applied to a water flow model (Hydrus-1D) in which soil water content at various depths and soil hydraulic parameters were updated. Two case studies are presented. Overall, the proposed method yielded parameters and states estimates that were more accurate and more consistent than those obtained when adjusting all the parameters. Furthermore, the results show that the higher the influence of a parameter on the model output under the current conditions, the better the estimation of this parameter is.

Original languageEnglish
Article number3606
JournalWater (Switzerland)
Volume14
Issue number22
DOIs
StatePublished - Nov 2022

Keywords

  • Hydrus-1D
  • particle filter
  • soil hydrology

All Science Journal Classification (ASJC) codes

  • Water Science and Technology
  • Geography, Planning and Development
  • Aquatic Science
  • Biochemistry

Fingerprint

Dive into the research topics of 'Covariance-Based Selection of Parameters for Particle Filter Data Assimilation in Soil Hydrology'. Together they form a unique fingerprint.

Cite this