Abstract
Current studies of WN Toda field theory focus on correlation functions such that the WN highest-weight representations in the fusion channels are multiplicity-free. In this work, we study W3 Toda 4-point functions with multiplicity in the fusion channel. The conformal blocks of these 4-point functions involve matrix elements of a fully-degenerate primary field with a highest-weight in the adjoint representation of sl3, and a fully-degenerate primary field with a highest-weight in the fundamental representation of sl3. We show that, when the fusion rules do not involve multiplicities, the matrix elements of the fully-degenerate adjoint field, between two arbitrary descendant states, can be computed explicitly, on equal footing with the matrix elements of the semi-degenerate fundamental field. Using null-state conditions, we obtain a fourth-order Fuchsian differential equation for the conformal blocks. Using Okubo theory, we show that, due to the presence of multiplicities, this differential equation belongs to a class of Fuchsian equations that is different from those that have appeared so far in WN theories. We solve this equation, compute its monodromy group, and construct the monodromy-invariant correlation functions. This computation shows in detail how the ambiguities that are caused by the presence of multiplicities are fixed by requiring monodromy-invariance.
Original language | English |
---|---|
Article number | 137 |
Journal | Journal of High Energy Physics |
Volume | 2016 |
Issue number | 6 |
DOIs | |
State | Published - 1 Jun 2016 |
Externally published | Yes |
Keywords
- Conformal and W Symmetry
- Conformal Field Models in String Theory
- Integrable Field Theories
- Supersymmetric gauge theory
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics