TY - GEN
T1 - Coresets for clustering in graphs of bounded treewidth
AU - Baker, Daniel
AU - Braverman, Vladimir
AU - Huang, Lingxiao
AU - Jiang, Shaofeng H.C.
AU - Krauthgamer, Robert
AU - Wu, Xuan
N1 - Publisher Copyright: © ICML 2020. All rights reserved.
PY - 2020
Y1 - 2020
N2 - We initiate the study of coresets for clustering in graph metrics, i.e., the shortest-path metric of edge-weighted graphs. Such clustering problems are essential to data analysis and used for example in road networks and data visualization. A coreset is a compact summary of the data that approximately preserves the clustering objective for every possible center set, and it offers significant efficiency improvements in terms of running time, storage, and communication, including in streaming and distributed settings. Our main result is a near-linear time construction of a coreset for k-MEDIAN in a general graph G, with size O_;k(tw(G)) where tw(G) is the treewidth of G, and we complement the construction with a nearly-Tight size lower bound. The construction is based on the framework of Feldman and Langberg [STOC 2011], and our main technical contribution, as required by this framework, is a uniform bound of O(tw(G)) on the shattering dimension under any point weights. We validate our coreset on real-world road networks, and our scalable algorithm constructs tiny coresets with high accuracy, which translates to a massive speedup of existing approximation algorithms such as local search for graph k-MEDIAN.
AB - We initiate the study of coresets for clustering in graph metrics, i.e., the shortest-path metric of edge-weighted graphs. Such clustering problems are essential to data analysis and used for example in road networks and data visualization. A coreset is a compact summary of the data that approximately preserves the clustering objective for every possible center set, and it offers significant efficiency improvements in terms of running time, storage, and communication, including in streaming and distributed settings. Our main result is a near-linear time construction of a coreset for k-MEDIAN in a general graph G, with size O_;k(tw(G)) where tw(G) is the treewidth of G, and we complement the construction with a nearly-Tight size lower bound. The construction is based on the framework of Feldman and Langberg [STOC 2011], and our main technical contribution, as required by this framework, is a uniform bound of O(tw(G)) on the shattering dimension under any point weights. We validate our coreset on real-world road networks, and our scalable algorithm constructs tiny coresets with high accuracy, which translates to a massive speedup of existing approximation algorithms such as local search for graph k-MEDIAN.
UR - http://www.scopus.com/inward/record.url?scp=85105179644&partnerID=8YFLogxK
M3 - منشور من مؤتمر
T3 - 37th International Conference on Machine Learning, ICML 2020
SP - 546
EP - 556
BT - 37th International Conference on Machine Learning, ICML 2020
A2 - Daume, Hal
A2 - Singh, Aarti
T2 - 37th International Conference on Machine Learning, ICML 2020
Y2 - 13 July 2020 through 18 July 2020
ER -